用户名: 密码: 验证码:
Re-mention of an old neurodegenerative disease: Alzheimer’s disease
详细信息    查看全文
  • 作者:Peng Zhang (15673)
    Ursula Adams (25673)
    ZengQiang Yuan (15673)
  • 关键词:Alzheimer’s disease (AD) ; β ; amyloid (Aβ) ; tau ; oxidative stress ; neuronal cell death ; Retromer complex
  • 刊名:Chinese Science Bulletin
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:58
  • 期:15
  • 页码:1731-1736
  • 全文大小:489KB
  • 参考文献:1. Alzheimer A. ber einen eigenartigen schweren erkrankungsprozess der hirnrinde. Neurologisches Centralblatt, 1906, 23: 1129-136
    2. Graeber M B, Kosel S, Egensperger R, et al. Rediscovery of the case described by Alois Alzheimer in 1911: Historical, histological and molecular genetic analysis. Neurogenetics, 1997, 1: 73-0 CrossRef
    3. Ittner L M, Gotz J. Amyloid-beta and tau—A toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci, 2011, 12: 65-2 CrossRef
    4. Stefanacci R G. The costs of Alzheimer’s disease and the value of effective therapies-page 2. Am J Manag Care, 2011, 17: S356–S362
    5. Thies W, Bleiler L. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement, 2011, 7: 208-44 CrossRef
    6. Zhang Y W, Thompson R, Zhang H, et al. App processing in Alzheimer’s disease. Mol Brain, 2011, 4: 3 CrossRef
    7. Corder E H, Saunders A M, Strittmatter W J, et al. Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261: 921-23 CrossRef
    8. Blennow K, de Leon M J, Zetterberg H. Alzheimer’s disease. Lancet, 2006, 368: 387-03 CrossRef
    9. Waring S C, Rosenberg R N. Genome-wide association studies in Alzheimer disease. Arch Neurol, 2008, 65: 329-34 CrossRef
    10. Turner P R, O’Connor K, Tate W P, et al. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol, 2003, 70: 1-2 CrossRef
    11. Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci, 2006, 26: 7212-221 CrossRef
    12. Zheng H, Koo E H. The amyloid precursor protein: Beyond amyloid. Mol Neurodegener, 2006, 1: 5 CrossRef
    13. De Strooper B. Aph-1, pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 2003, 38: 9-2 CrossRef
    14. Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297: 353-56 CrossRef
    15. Wolfe M S. When loss is gain: Reduced presenilin proteolytic function leads to increased abeta42/abeta40. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep, 2007, 8: 136-40 CrossRef
    16. Trojanowski J Q, Jedrziewski M K, Johnson B, et al. The art and science of anti-aging therapies. Sci Aging Knowledge Environ, 2005, 17: pe11 CrossRef
    17. Crapper D R, Krishnan S S, Quittkat S. Aluminium, neurofibrillary degeneration and Alzheimer’s disease. J Neurol, 1976, 99: 67-0
    18. Nie C L, Wang X S, Liu Y, et al. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells. BMC Neurosci, 2007, 8: 9 CrossRef
    19. He R, Lu J, Miao J. Formaldehyde stress. Sci China Life Sci, 2010, 53: 1399-404 CrossRef
    20. Wenk G L. Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry, 2003, 64(Suppl 9): 7-0
    21. Citron M. Alzheimer’s disease: Strategies for disease modification. Nat Rev Drug Discov, 2010, 9: 387-98 CrossRef
    22. O’Brien R J, Wong P C. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci, 2011, 34: 185-04 CrossRef
    23. Riemenschneider M, Schoepfer-Wendels A, Friedrich P, et al. No association of vacuolar protein sorting 26 polymorphisms with Alzheimer’s disease. Neurobiol Aging, 2007, 28: 883-84 CrossRef
    24. McGeer P L, McGeer E G. Nsaids and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiol Aging, 2007, 28: 639-47 CrossRef
    25. Zhang B, Carroll J, Trojanowski J Q, et al. The microtubule-stabilizing agent, epothilone d, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci, 2012, 32: 3601-611 CrossRef
    26. Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer’s disease. Indian J Psychiatry, 2009, 51: 55-1 CrossRef
    27. Tanzi R E, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 2005, 120: 545-55 CrossRef
    28. Walsh D M, Selkoe D J. A beta oligomers—A decade of discovery. J Neurochem, 2007, 101: 1172-184 CrossRef
    29. You H, Tsutsui S, Hameed S, et al. Abeta neurotoxicity depends on interactions between copper ions, prion protein, and / N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA, 2012, 109: 1737-742 CrossRef
    30. Behbehani R G. A novel method for thermodynamic study on binding of copper ion with Alzheimer’s amyliod β peptide. Chin Sci Bull, 2009, 54: 1037-042 CrossRef
    31. Loo D T, Copani A, Pike C J, et al. Apoptosis is induced by betaamyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA, 1993, 90: 7951-955 CrossRef
    32. Behl C, Davis J B, Klier F G, et al. Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res, 1994, 645: 253-64 CrossRef
    33. Behl C, Davis J B, Lesley R, et al. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 1994, 77: 817-27 CrossRef
    34. Hensley K, Carney J M, Mattson M P, et al. A model for betaamyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci USA, 1994, 91: 3270-274 CrossRef
    35. Shearman M S, Ragan C I, Iversen L L. Inhibition of pc12 cell redox activity is a specific, early indicator of the mechanism of betaamyloid-mediated cell death. Proc Natl Acad Sci USA, 1994, 91: 1470-474 CrossRef
    36. Mattson M P, Goodman Y. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res, 1995, 676: 219-24 CrossRef
    37. Pillot T, Drouet B, Queille S, et al. The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: Involvement of its c-terminal fusogenic domain. J Neurochem, 1999, 73: 1626-634 CrossRef
    38. Vodovotz Y, Lucia M S, Flanders K C, et al. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med, 1996, 184: 1425-433 CrossRef
    39. Hashimoto Y, Ito Y, Arakawa E, et al. Neurotoxic mechanisms triggered by Alzheimer’s disease-linked mutant m146l presenilin 1: Involvement of no synthase via a novel pertussis toxin target. J Neurochem, 2002, 80: 426-37 CrossRef
    40. Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronal cell death through ros-mediated ask1 activation. Cell Death Differ, 2005, 12: 19-4 CrossRef
    41. Kudo W, Lee H P, Smith M A, et al. Inhibition of bax protects neuronal cells from oligomeric abeta neurotoxicity. Cell Death Dis, 2012, 3: e309 CrossRef
    42. Yin G, Li L Y, Qu M, et al. Upregulation of akt attenuates amyloid-beta-induced cell apoptosis. J Alzheimers Dis, 2011, 25: 337-45
    43. Goedert M, Spillantini M G, Jakes R, et al. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 1989, 3: 519-26 CrossRef
    44. Harada A, Oguchi K, Okabe S, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature, 1994, 369: 488-91 CrossRef
    45. Ishiguro K, Shiratsuchi A, Sato S, et al. Glycogen synthase kinase 3 beta is identical to tau protein kinase i generating several epitopes of paired helical filaments. FEBS Lett, 1993, 325: 167-72 CrossRef
    46. Ishiguro K, Kobayashi S, Omori A, et al. Identification of the 23 kDa subunit of tau protein kinase ii as a putative activator of cdk5 in bovine brain. FEBS Lett, 1994, 342: 203-08 CrossRef
    47. Avila J, Hernández F. Tau phosphorylation. In: Nixon R A, Yuan A, eds. Cytoskeleton of the Nervous System. New York: Springer, 2011. 73-2 CrossRef
    48. Gotz J, Probst A, Spillantini M G, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J, 1995, 14: 1304-313
    49. David D C, Hauptmann S, Scherping I, et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in p301l tau transgenic mice. J Biol Chem, 2005, 280: 23802-3814 CrossRef
    50. Reddy P H. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res, 2011, 1415: 136-48 CrossRef
    51. Li H L, Wang H H, Liu S J, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA, 2007, 104: 3591-596 CrossRef
    52. Wang J Z, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol, 2008, 85: 148-75 CrossRef
    53. Xiao L, Yuan Z. Redemystifying mst1/hippo signaling. Protein Cell, 2010, 1: 706-08 CrossRef
    54. Lehtinen M K, Yuan Z, Boag P R, et al. A conserved mst-foxo signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006, 125: 987-001 CrossRef
    55. Jang S W, Yang S J, Srinivasan S, et al. Akt phosphorylates msti and prevents its proteolytic activation, blocking foxo3 phosphorylation and nuclear translocation. J Biol Chem, 2007, 282: 30836-0844 CrossRef
    56. Yuan Z, Kim D, Shu S, et al. Phosphoinositide 3-kinase/akt inhibits mst1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem, 2010, 285: 3815-824 CrossRef
    57. Bi W, Xiao L, Jia Y, et al. C-jun n-terminal kinase enhances mst1-mediated pro-apoptotic signaling through phosphorylation at serine 82. J Biol Chem, 2010, 285: 6259-264 CrossRef
    58. Xiao L, Chen D, Hu P, et al. The c-abl-mst1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci, 2011, 31: 9611-619 CrossRef
    59. Liu W, Wu J, Xiao L, et al. Regulation of neuronal cell death by c-abl-hippo/mst2 signaling pathway. PLoS One, 2012, 7: e36562 CrossRef
    60. Belenkaya T Y, Wu Y, Tang X, et al. The retromer complex influences wnt secretion by recycling wntless from endosomes to the trans-golgi network. Dev Cell, 2008, 14: 120-31 CrossRef
    61. Zhang P, Wu Y, Belenkaya T Y, et al. Snx3 controls wingless/wnt secretion through regulating retromer-dependent recycling of wntless. Cell Res, 2011, 21: 1677-690 CrossRef
    62. He X, Li F, Chang W P, et al. Gga proteins mediate the recycling pathway of memapsin 2 (bace). J Biol Chem, 2005, 280: 11696-1703 CrossRef
    63. Nielsen M S, Gustafsen C, Madsen P, et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor sorla. Mol Cell Biol, 2007, 27: 6842-851 CrossRef
    64. Small SA, Kent K, Pierce A, et al. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol, 2005, 58: 909-19 CrossRef
    65. Muhammad A, Flores I, Zhang H, et al. Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and abeta accumulation. Proc Natl Acad Sci USA, 2008, 105: 7327-332 CrossRef
    66. Harterink M, Port F, Lorenowicz M J, et al. A snx3-dependent retromer pathway mediates retrograde transport of the wnt sorting receptor wntless and is required for wnt secretion. Nat Cell Biol, 2011, 13: 914-23 CrossRef
    67. Vardarajan B N, Bruesegem S Y, Harbour M E, et al. Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging, 2012, 33: 2231. e15-231. e30 CrossRef
    68. Choy R W, Cheng Z, Schekman R. Amyloid precursor protein (app) traffics from the cell surface via endosomes for amyloid beta (abeta) production in the trans-golgi network. Proc Natl Acad Sci USA, 2012, 109: E2077-082 CrossRef
    69. Sullivan CP, Jay A G, Stack E C, et al. Retromer disruption promotes amyloidogenic app processing. Neurobiol Dis, 2011, 43: 338-45 CrossRef
    70. Okada H, Zhang W, Peterhoff C, et al. Proteomic identification of sorting nexin 6 as a negative regulator of bace1-mediated app processing. FASEB J, 2010, 24: 2783-794 CrossRef
    71. Finan G M, Okada H, Kim T W. Bace1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin. J Biol Chem, 2011, 286: 12602-2616 CrossRef
    72. Ranganathan S, Noyes N C, Migliorini M, et al. Lrad3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J Neurosci, 2011, 31: 10836-0846 CrossRef
    73. Ehehalt R, Keller P, Haass C, et al. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol, 2003, 160: 113-23 CrossRef
    74. Tan J, Evin G. Beta-site app-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J Neurochem, 2012, 120: 869-80
    75. Vilarino-Guell C, Wider C, Ross O A, et al. Vps35 mutations in parkinson disease. Am J Hum Genet, 2011, 89: 162-67 CrossRef
    76. Zimprich A, Benet-Pages A, Struhal W, et al. A mutation in / vps35, encoding a subunit of the retromer complex, causes late-onset parkinson disease. Am J Hum Genet, 2011, 89: 168-75 CrossRef
    77. Hierro A, Rojas A L, Rojas R, et al. Functional architecture of the retromer cargo-recognition complex. Nature, 2007, 449: 1063-067 CrossRef
  • 作者单位:Peng Zhang (15673)
    Ursula Adams (25673)
    ZengQiang Yuan (15673)

    15673. State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
    25673. Biological Sciences, The University of Chicago, Chicago, Illinois, 60637, USA
  • ISSN:1861-9541
文摘
Alzheimer’s disease (AD), the most common form of neuropsychiatric disorder, is characterized by neuronal degeneration and inexorably progressing dementia, especially in the elderly population. With a rapidly aging population in both developed and developing countries, AD has emerged as one of the largest growing problems worldwide. Current drugs improve the symptoms of AD, but do not have any profound intervention to delay its onset. Thus, understanding the molecular mechanisms underlying the genes tied to AD will be crucial to the development of therapeutic targets. This review will summarize the aetiology, pathology, and the evidence for the genetic components in AD, discuss the proposed amyloid cascade and the following tau hyperphosphorylation hypothesises, oxidative stress mediated neuronal cell death, as well as the function of Retromer complex during the developing of AD. Our laboratory’s current research progress and the challenges that still remained will be also highlighted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700