用户名: 密码: 验证码:
Monitoring Rock Failure Processes Using the Hilbert–Huang Transform of Acoustic Emission Signals
详细信息    查看全文
  • 作者:Ji Zhang ; Weihong Peng ; Fengyu Liu ; Haixiang Zhang
  • 关键词:Rock fracturing ; Failure process ; Acoustic emission ; Hilbert–Huang transform ; Time–frequency analysis
  • 刊名:Rock Mechanics and Rock Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:49
  • 期:2
  • 页码:427-442
  • 全文大小:3,365 KB
  • 参考文献:Bahr D, Gerberich W (1998) Relationships between acoustic emission signals and physical phenomena during indentation. J Mater Res 13:1065–1074. doi:10.​1557/​JMR.​1998.​0148 CrossRef
    Benson PM, Vinciguerra S, Meredith PG, Young RP (2010) Spatio-temporal evolution of volcano seismicity: a laboratory study. Earth Planet Sci Lett 297:315–323. doi:10.​1016/​j.​epsl.​2010.​06.​033 CrossRef
    Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation matlab software. Exp Mech. doi:10.​1007/​s11340-015-0009-1
    Brace WF, Byerlee JD (1966) Recent experimental studies of brittle fracture of rocks. The 8th US symposium on rock mechanics (USRMS). American Rock Mechanics Association, ARMA
    Cai JG, Zhao J (2000) Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int J Rock Mech Min Sci 37:661–682. doi:10.​1016/​S1365-1609(00)00013-7 CrossRef
    Cai H, Evans J, Boomer D (1992) Acoustic emission analysis of stable and unstable fracture in high strength aluminium alloys. Eng Fract Mech 42:589–600. doi:10.​1016/​0013-7944(92)90042-D CrossRef
    Cai JL, Yu W, An FP (2013) A real-time microseismic monitoring system based on virtual instruments. Appl Mech Mater 246:199–203. doi:10.​1115/​1.​859810.​paper53
    Chang SH, Lee CI (2004) Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. Int J Rock Mech Min Sci 41:1069–1086. doi:10.​1016/​j.​ijrmms.​2004.​04.​006
    Cheon DS, Jung YB, Park ES et al (2011) Evaluation of damage level for rock slopes using acoustic emission technique with waveguides. Eng Geol 121:75–88. doi:10.​1016/​j.​enggeo.​2011.​04.​015 CrossRef
    Colombo IS, Main I, Forde M (2003) Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals. J Mater Civ Eng 15:280–286. doi:10.​1061/​(ASCE)0899-1561(2003)15:​3(280) CrossRef
    Curtis G (1975) Acoustic emission energy relates to bond strength. Non Destr Test 8:249–257. doi:10.​1016/​0029-1021(75)90045-6 CrossRef
    Gerberich WW, Hartbower CE (1967) Some observations on stress wave emission as a measure of crack growth. Int J Fract Mech 3:185–192. doi:10.​1007/​BF00183950
    Gon Y, He M, Wang Z, Yin Y (2013) Research on time-frequency analysis algorithm and instantaneous frequency precursors for acoustic emission data from rock failure experiment. Chin J Rock Mech Eng 32:787–799. doi:10.​3969/​j.​issn.​1000-6915.​2013.​04.​018
    He M, Qian Q (2010) Foundation of rock and soilmechanics in depth. Science Press, Beijing, pp 1–30
    Hoek E (1968) Brittle fracture of rock. Rock Mech Eng Pract Wiley Lond 99–124
    Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser Math Phys Eng Sci 454:903–995. doi:10.​1098/​rspa.​1998.​0193 CrossRef
    Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457. doi:10.​1146/​annurev.​fluid.​31.​1.​417 CrossRef
    Kim JS, Lee KS, Cho WJ et al (2014) A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock. Rock Mech Rock Eng. doi:10.​1007/​s00603-014-0590-0
    Landis EN, Baillon L (2002) Experiments to relate acoustic emission energy to fracture energy of concrete. J Eng Mech 128:698–702. doi:10.​1061/​(ASCE)0733-9399(2002)128:​6(698) CrossRef
    Landis EN, Whittaker DB (2000) Acoustic emissions and the fracture energy of wood. Cond Monit Mater Struct Ansari F Ed ASCE Reston VA. doi:10.​1061/​40495(302)2
    Lei X, Kusunose K, Rao M et al (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res Solid Earth (1978–2012) 105:6127–6139. doi:10.​1029/​1999JB900385 CrossRef
    Li YH, Liu JP, Zhao XD, Yang YJ (2010) Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process. Int J Rock Mech Min Sci 47:1254–1262. doi:10.​1016/​j.​ijrmms.​2010.​08.​002 CrossRef
    Li C, Liu J, Wang C et al (2012a) Spectrum characteristics analysis of microseismic signals transmitting between coal bedding. Saf Sci 50:761–767. doi:10.​1016/​j.​ssci.​2011.​08.​038 CrossRef
    Li X, Cao WG, Su YH (2012b) A statistical damage constitutive model for softening behavior of rocks. Eng Geol 143–144:1–17. doi:10.​1016/​j.​enggeo.​2012.​05.​005 CrossRef
    Lin Q, Fakhimi A, Haggerty M, Labuz JF (2009) Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min Sci 46:489–497. doi:10.​1016/​j.​ijrmms.​2008.​10.​008 CrossRef
    Liu J, Li C, Wang C et al (2011) Spectral characteristics of micro-seismic signals obtained during the rupture of coal. Min Sci Technol China 21:641–645. doi:10.​1016/​j.​mstc.​2011.​10.​010 CrossRef
    Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30:883–899CrossRef
    Lockner DA, Byerlee JD (1992) Fault growth and acoustic emissions in confined granite. Appl Mech Rev 45:S165–S173CrossRef
    Lockner D, Byerlee J, Kuksenko V et al (1991) Quasi-static fault growth and shear fracture energy in granite. Nature 350:39–42CrossRef
    Mitraković D, Grabec I, Sedmak S (1985) Simulation of AE signals and signal analysis systems. Ultrasonics 23:227–232. doi:10.​1016/​0041-624X(85)90018-6 CrossRef
    Ponomarev A, Lockner D, Stroganova S et al (2010) Oscillating load-induced acoustic emission in laboratory experiment. Synchronization and triggering: from fracture to earthquake processes. Springer, pp 165–177
    Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res Solid Earth. doi:10.​1029/​2003JB002639
    Puri S, Weiss J (2006) Assessment of localized damage in concrete under compression using acoustic emission. J Mater Civ Eng 18:325–333. doi:10.​1061/​(ASCE)0899-1561(2006)18:​3(325) CrossRef
    Raghu Prasad B, Vidya Sagar R (2008) Relationship between AE energy and fracture energy of plain concrete beams: experimental study. J Mater Civ Eng 20:212–220. doi:10.​1061/​(ASCE)0899-1561(2008)20:​3(212) CrossRef
    Read HE, Hegemier GA (1984) Strain softening of rock, soil and concrete—a review article. Mech Mater 3:271–294. doi:10.​1016/​0167-6636(84)90028-0 CrossRef
    Rilling G, Flandrin P, Goncalves P et al (2003) On empirical mode decomposition and its algorithms. IEEE-EURASIP workshop on nonlinear signal and image processing. NSIP-03, Grado (I), pp 8–11
    Scholz C (1968) Experimental study of the fracturing process in brittle rock. J Geophys Res 73:1447–1454. doi:10.​1029/​JB073i004p01447 CrossRef
    Sejdić E, Djurović I, Jiang J (2009) Time–frequency feature representation using energy concentration: an overview of recent advances. Digit Signal Process 19:153–183. doi:10.​1016/​j.​dsp.​2007.​12.​004 CrossRef
    Wang G, Li C, Hu S et al (2010) A study of time-and spatial-attenuation of stress wave amplitude in rock mass. Rock Soil Mech 31:3487–3492. doi:10.​3969/​j.​issn.​1000-7598.​2010.​11.​022
    Wang YH, Yeh CH, Young HWV et al (2014) On the computational complexity of the empirical mode decomposition algorithm. Phys Stat Mech Its Appl 400:159–167. doi:10.​1016/​j.​physa.​2014.​01.​020 CrossRef
    Wasantha P, Ranjith P, Shao S (2014) Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission. Ultrasonics 54:217–226. doi:10.​1016/​j.​ultras.​2013.​06.​015 CrossRef
    Wawersik W, Fairhurst C (1970) A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci Geomech Abstr 7:561–575. doi:10.​1016/​0148-9062(70)90007-0 CrossRef
    Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41. doi:10.​1142/​S179353690900004​7 CrossRef
    Xue L, Qin S, Sun Q et al (2014) A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech Rock Eng 47:1183–1195. doi:10.​1007/​s00603-013-0479-3 CrossRef
    Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606. doi:10.​1007/​s00603-011-0208-8 CrossRef
    Young RP (1993) Seismic methods applied to rock mechanics. Int Soc Rock Mech News J 1:4–18
    Zhang Y, Shao JF, Xu WY et al (2014) Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech Rock Eng. doi:10.​1007/​s00603-014-0623-8
    Zhao J, Zhao XB, Cai JG (2006) A further study of P-wave attenuation across parallel fractures with linear deformational behaviour. Int J Rock Mech Min Sci 43:776–788. doi:10.​1016/​j.​ijrmms.​2005.​12.​007 CrossRef
    Zuo J, Xie H, Zhou H et al (2007) Fractography of sandstone failure under temperature-tensile stress coupling effects. Chin J Rock Mech Eng 26:2. doi:10.​3321/​j.​issn:​1000-6915.​2007.​12.​009
  • 作者单位:Ji Zhang (1)
    Weihong Peng (1)
    Fengyu Liu (1)
    Haixiang Zhang (1)
    Zhijian Li (1)

    1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, 221116, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Civil Engineering
  • 出版者:Springer Wien
  • ISSN:1434-453X
文摘
Rock fracturing generates acoustic emission (AE) signals that have statistical parameters referred to as AE signal parameters (AESP). Identification of rock fracturing or the failure process stage using such data raises several challenges. This study proposes a Hilbert–Huang transform-based AE processing approach to capture the time–frequency characteristics of both AE signals and AESP during rock failure processes. The damage occurring in tested rock specimens can be illustrated through analysis using this method. In this study, the specimens were 25 × 60 × 150 mm3 in size and were compressed at a displacement rate of 0.05 mm/min until failure. The recorded data included force and displacement, AE signals, and AESP. The AESP in the last third of the strain range period and 14 typical moments of strong AE signals were selected for further investigation. These results show that AE signals and AESP can be jointly used for identification of deformation stages. The transition between linear and nonlinear deformation stages was found to last for a short period in this process. The instantaneous frequency of the AE effective energy rate increased linearly from 0.5 to 1.5 Hz. Attenuation of elastic waves spreading in rock samples developed with deformation, as illustrated in the Hilbert spectra of AE signals. This attenuation is frequency dependent. Furthermore, AE signals in the softening process showed a complex frequency distribution attributed to the mechanical properties of the tested specimen. The results indicate that rock failure is predictable. The novel technology applied in this study is feasible for analysis of the entire deformation process, including softening and failure processes. Keywords Rock fracturing Failure process Acoustic emission Hilbert–Huang transform Time–frequency analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700