用户名: 密码: 验证码:
Plasmonic-Induced Transparency and Slow-Light Effect Based on Stub Waveguide with Nanodisk Resonator
详细信息    查看全文
  • 作者:Ben Huang ; Hongyun Meng ; Qinghao Wang ; Huihao Wang ; Xing Zhang ; Wei Yu…
  • 关键词:Surface plasmons ; Electromagnetic optics ; Waveguides ; Integrated optics devices
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:543-550
  • 全文大小:1,645 KB
  • 参考文献:1.Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. doi:10.​1038/​nature01937 CrossRef
    2.Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(5):2494–2498. doi:10.​1021/​nl300659v CrossRef
    3.Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14(7):2932–2937. doi:10.​1364/​OE.​14.​002932 CrossRef
    4.Nomura W, Ohtsu M, Yatsui T (2005) Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl Phys Lett 86(18):181108. doi:10.​1063/​1.​1920419 CrossRef
    5.Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915. doi:10.​1364/​OE.​19.​002910 CrossRef
    6.Xu T, Wu Y-K, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1(5):59. doi:10.​1038/​ncomms1058 CrossRef
    7.Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102. doi:10.​1063/​1.​2056594 CrossRef
    8.Lu H, Liu X, Gong Y, Mao D, Wang L (2011) Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express 19(14):12885–12890. doi:10.​1364/​OE.​19.​012885 CrossRef
    9.Noual A, Akjouj A, Pennec Y, Gillet J-N, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11(10):103020. doi:10.​1088/​1367-2630/​11/​10/​103020 CrossRef
    10.Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994. doi:10.​1364/​OE.​17.​013989 CrossRef
    11.Tao J, Huang XG, Lin X, Chen J, Zhang Q, Jin X (2010) Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J Opt Soc Am B 27(2):323–327. doi:10.​1364/​JOSAB.​27.​000323 CrossRef
    12.Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876. doi:10.​1364/​OL.​33.​002874 CrossRef
    13.Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518. doi:10.​1364/​OE.​19.​003513 CrossRef
    14.Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101. doi:10.​1364/​OE.​17.​024096 CrossRef
    15.Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36(16):3233–3235. doi:10.​1364/​OL.​36.​003233 CrossRef
    16.Cui Y, Zeng C (2012) Optical bistability based on an analog of electromagnetically induced transparencyin plasmonic waveguide-coupled resonators. Appl Opt 51(31):7482–7486. doi:10.​1364/​AO.​51.​007482 CrossRef
    17.Lai G, Liang R, Zhang Y, Bian Z, Yi L, Zhan G, Zhao R (2015) Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt Express 23(5):6554–6561. doi:10.​1364/​OE.​23.​006554 CrossRef
    18.Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596. doi:10.​1103/​PhysRevLett.​66.​2593 CrossRef
    19.Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104(24):243902. doi:10.​1103/​PhysRevLett.​104.​243902 CrossRef
    20.Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803. doi:10.​1103/​PhysRevA.​85.​053803 CrossRef
    21.Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401. doi:10.​1103/​PhysRevLett.​101.​047401 CrossRef
    22.Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762. doi:10.​1038/​nmat2495 CrossRef
    23.Naweed A, Farca G, Shopova SI, Rosenberger AT (2005) Induced transparency and absorption in coupled whispering-gallery microresonators. Phys Rev A 71(4):043804. doi:10.​1103/​PhysRevA.​71.​043804 CrossRef
    24.Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80(3):035104. doi:10.​1103/​PhysRevB.​80.​035104 CrossRef
    25.Zhou J, Mu D, Yang J, Han W, Di X (2011) Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems. Opt Express 19(6):4856–4861. doi:10.​1364/​OE.​19.​004856 CrossRef
    26.Lu H, Liu X, Wang G, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnol 23(44):444003. doi:10.​1088/​0957-4484/​23/​44/​444003 CrossRef
    27.Zafar R, Salim M (2014) Wideband slow light achievement in MIM plasmonic waveguide by controlling Fano resonance. Infrared Phys Technol 67:25–29. doi:10.​1016/​j.​infrared.​2014.​06.​006 CrossRef
    28.Chen Z, Wang W, Cui L, Yu L, Duan G, Zhao Y, Xiao J (2015) Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10(3):721–727. doi:10.​1007/​s11468-014-9858-1 CrossRef
    29.Cao G, Li H, Deng Y, Zhan S, He Z, Li B (2014) Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9(5):1163–1169. doi:10.​1007/​s11468-014-9727-y CrossRef
    30.Zhan SP, Li HJ, Cao GT, He ZH, Li BX, Xu H (2014) Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems. Plasmonics 9(6):1431–1437. doi:10.​1007/​s11468-014-9760-x CrossRef
    31.Zhanghua H, Forsberg E, Sailing H (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19(2):91–93. doi:10.​1109/​LPT.​2006.​889036 CrossRef
    32.Haus HA (1984) Waves and fields in optoelectronics, vol 464. Prentice-Hall, New Jersey
    33.Liu Z, Xiao J-J, Zhang Q, Zhang X, Tao K (2015) Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer. Plasmonics:1-6. doi:10.​1007/​s11468-015-9901-x
    34.Zeng C, Guo J, Liu X (2014) High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity. Appl Phys Lett 105(12):121103. doi:10.​1063/​1.​4895633 CrossRef
    35.Wang J, Yuan B, Fan C, He J, Ding P, Xue Q, Liang E (2013) A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt Express 21(21):25159–25166. doi:10.​1364/​OE.​21.​025159 CrossRef
  • 作者单位:Ben Huang (1)
    Hongyun Meng (1)
    Qinghao Wang (1)
    Huihao Wang (1)
    Xing Zhang (1)
    Wei Yu (1)
    Chunhua Tan (1)
    Xuguang Huang (1)
    Faqiang Wang (1)

    1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, Peoples Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
A compact plasmonic system based on a stub metal-insulator-metal (MIM) waveguide coupled with a nanodisk resonator for plasmonic-induced transparency (PIT) has been proposed and numerically simulated by employing the finite-difference time-domain (FDTD). A reasonable analysis of the transmission features based on the temporal coupled-mode theory is given and is in good agreement with the FDTD simulation. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nanodisk, the coupling distance, and the deviation length between the stub and the nanodisk is studied in a step further. By optimum designing, the transmission of the PIT system can reach to as high as 90 %, as well as the group index can be over 88. The characteristics of our plasmonic system indicate an important potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter and slow-light devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700