用户名: 密码: 验证码:
Identification and ecotoxicity assessment of intermediates generated during the degradation of clofibric acid by advanced oxidation processes
详细信息    查看全文
  • 作者:Wenzhen Li (1)
    Yu Ding (2)
    Qian Sui (1)
    Shuguang Lu (1)
    Zhaofu Qiu (1)
    Kuangfei Lin (1)
  • 关键词:clofibric acid ; advanced oxidation processes ; intermediates ; toxicity ; Photobacterium phosphoreum T3 spp
  • 刊名:Frontiers of Environmental Science & Engineering
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:6
  • 期:4
  • 页码:445-454
  • 全文大小:228KB
  • 参考文献:1. Hallingsorensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützh?ft H C, J?rgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 1998, 36(2): 357-93 CrossRef
    2. Bound J P, Voulvoulis N. Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies. Chemosphere, 2004, 56(11): 1143-155 CrossRef
    3. Sanderson H, Johnson D J, Wilson C J, Brain R A, Solomon K R. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 2003, 144(3): 383-95 CrossRef
    4. Santos L H M L M, Araújo A N, Fachini A, Pena A, Delerue-Matos C, Montenegro M C. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 2010, 175(1-): 45-5 CrossRef
    5. Buser H R, Müller M D, Theobald N. Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environmental Science & Technology, 1998, 32(1): 188-92 CrossRef
    6. Heberer T, Schmidt-B?umler K, Stan H J. Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part 1. Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochimica et Hydrobiologica, 1998, 26(5): 272-78 CrossRef
    7. Doll T E, Frimmel F H. Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere, 2003, 52(10): 1757-769 CrossRef
    8. Andreozzi R, Raffaele M, Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 2003, 50(10): 1319-330 CrossRef
    9. Ferrari B, Paxéus N, Giudice R L, Pollio A, Garric J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 2003, 55(3): 359-70 CrossRef
    10. Emblidge J P, Delorenzo M E. Preliminary risk assessment of the lipid-regulating pharmaceutical clofibric acid, for three estuarine species. Environmental Research, 2006, 100(2): 216-26 CrossRef
    11. Lin A Y C, Yu T H, Lateef S K. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 2009, 167(1-): 1163-169 CrossRef
    12. Flaherty C M, Dodson S I. Effects of pharmaceuticals on / Daphnia survival, growth, and reproduction. Chemosphere, 2005, 61(2): 200-07 CrossRef
    13. Runnalls T J, Hala D N, Sumpter J P. Preliminary studies into the effects of the human pharmaceutical Clofibric acid on sperm parameters in adult / Fathead minnow. Aquatic Toxicology (Amsterdam, Netherlands), 2007, 84(1): 111-18 CrossRef
    14. Triebskorn R, Casper H, Scheil V, Schwaiger J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout ( / Oncorhynchus mykiss) and common carp ( / Cyprinus carpio). Analytical and Bioanalytical Chemistry, 2007, 387(4): 1405-416 CrossRef
    15. Kim J, Park J, Kim P G, Lee C, Choi K, Choi K. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in / Daphnia magna. Ecotoxicology (London, England), 2010, 19(4): 662-69
    16. Jung J Y, Kim Y H, Kim J, Jeong D H, Choi K. Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in / Daphnia magna. Ecotoxicology (London, England), 2008, 17(1): 37-5
    17. Kim J, Park Y, Choi K. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation. Aquatic Toxicology (Amsterdam, Netherlands), 2009, 91(1): 87-4 CrossRef
    18. Li W Z, Lu S G, Qiu Z F, Lin K F. Clofibric acid degradation in UV254/H2O2 process: effect of temperature. Journal of Hazardous Materials, 2010, 176(1-): 1051-057
    19. Li WZ, Lu S G, Qiu Z F, Lin K F. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2 treatment for removal of clofibric acid from aqueous solution. Environmental Technology, 2011, 32(10): 1063-071 CrossRef
    20. Li W Z, Lu S G, Qiu Z F, Lin K F. Photocatalysis of clofibric acid under solar light in summer and winter seasons. Industrial & Engineering Chemistry Research, 2011, 50(9): 5384-393 CrossRef
    21. Nicole I, De Laat J, Dore M, Duguet J P, Bonnel C. Use of u.v. radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry. Water Research, 1990, 24(2): 157-68 CrossRef
    22. Doll T E, Frimmel F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Research, 2004, 38(4): 955-64 CrossRef
    23. Sirés I, Arias C, Cabot P L, Centellas F, Garrido J A, Rodríguez R M, Brillas E. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere, 2007, 66(9): 1660-669 CrossRef
    24. Rosal R, Gonzalo M S, Boltes K, Letón P, Vaquero J J, García-Calvo E. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid. Journal of Hazardous Materials, 2009, 172(2-): 1061-068 CrossRef
    25. Ai Z H, Yang P, Lu X H. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials, 2005, 124(1-): 147-52 CrossRef
    26. Gaya U I, Abdullah A H, Zainal Z, Hussein M Z. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. Journal of Hazardous Materials, 2009, 168(1): 57-3 CrossRef
    27. Gaya U I, Abdullah A H, Hussein M Z, Zainal Z. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO power. Desalination, 2010, 263(1-): 176-82 CrossRef
    28. Zertal A, Sehili T, Boule P. Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 146(1-): 37-8 CrossRef
    29. Salama T M, Ali I O, Mohamed M M. Synthesis and characterization of mordenites encapsulated titania nanopariticles: photocatalytic degradation of / meta-chlorophenol. Journal of Molecular Catalysis A: Chemical, 2007, 273(1-): 198-10 CrossRef
    30. Kralik P, Kusic H, Koprivanac N, Loncaric Bozic A. Degradation of chlorinated hydrocarbons by UV/H2O2: the application of experimental design and kinetic modeling approach. Chemical Engineering Journal, 2010, 158(2): 154-66 CrossRef
    31. Zhang L F, Sawell S, Moralejo C, Anderson W A. Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene. Applied Catalysis B: Environmental, 2007, 71(3-): 135-42 CrossRef
    32. Andreozzi R, Canterino M, Giudice R L, Marotta R, Pinto G, Pollio A. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Research, 2006, 40(3): 630-38 CrossRef
    33. Chaabane H, Vulliet E, Joux F, Lantoine F, Conan P, Cooper J F, Coste C M. Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms. Water Research, 2007, 41(8): 1781-789 CrossRef
    34. Bonnemoy F, Lavédrine B, Boulkamh A. Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox? test. Chemosphere, 2004, 54(8): 1183-187 CrossRef
    35. Shang N C, Yu Y H, Ma H W, Chang C H, Liou M L. Toxicity measurements in aqueous solution during ozonation of monochlorophenols. Journal of Environmental Management, 2006, 78(3): 216-22 CrossRef
  • 作者单位:Wenzhen Li (1)
    Yu Ding (2)
    Qian Sui (1)
    Shuguang Lu (1)
    Zhaofu Qiu (1)
    Kuangfei Lin (1)

    1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
    2. Datang Energy Corporation, Hulunbeier, 021008, China
  • ISSN:2095-221X
文摘
The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO2 processes, as well as to assess the toxicity of these intermediates. Eleven intermediates have been detected by gas chromatography-mass spectrometer, most of which were reported for the first time to our best knowledge. Combining the evolution of the dissolved organic carbon, Cl?/sup> and specific ultraviolet absorption at 254 nm, it could be deduced that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/TiO2 process, while dechlorination happened first and accumulation of aromatic intermediates occurred in the other processes. Different transformation pathways were proposed for UV-, VUV-assisted and solar/TiO2 processes, respectively. The acute toxicity was evaluated by means of Photobacterium phosphoreum T3 spp. bioassay. It was believed that aromatic intermediates increased the toxicity and the ring-opening pathway in solar/TiO2 process could relieve the toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700