用户名: 密码: 验证码:
The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells
详细信息    查看全文
  • 作者:Xuesen Yang (1) (2)
    Genlin He (1) (2)
    Yutong Hao (3)
    Chunhai Chen (1)
    Maoquan Li (1)
    Yuan Wang (1)
    Guangbin Zhang (1)
    Zhengping Yu (1)
  • 刊名:Journal of Neuroinflammation
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:7
  • 期:1
  • 全文大小:2041KB
  • 参考文献:1. Borbély AA, Huber R, Graf T, Fuchs B, Gallmann E, Achermann P: Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. / Neurosci Lett 1999, 275:207-10. CrossRef
    2. Koivisto M, Krause CM, Revonsuo A, Laine M, H?m?l?inen H: The effects of electromagnetic field emitted by GSM phones on working memory. / Neuroreport 2000, 11:1641-643. CrossRef
    3. Huber R, Treyer V, Borbély AA, Schuderer J, Gottselig JM, Landolt HP, Werth E, Berthold T, Kuster N, Buck A, Achermann P: Electromagnetic fields, such as those from mobile phones, alterregional cerebral blood flow and sleep and waking EEG. / J Sleep Res 2002, 11:289-95. CrossRef
    4. Maier R, Greter SE, Maier N: Effects of pulsed electromagnetic fields on cognitive processes - a pilot study on pulsed field interference with cognitive regeneration. / Acta Neurol Scand 2004, 110:46-2. CrossRef
    5. Besset A, Espa F, Dauvilliers Y, Billiard M, de Seze R: No effect on cognitive function from daily mobile phone use. / Bioelectromagnetics 2005, 26:102-08. CrossRef
    6. Terao Y, Okano T, Furubayashi T, Ugawa Y: Effects of thirty-minute mobile phone use on visuo-motor reaction time. / Clin Neurophysiol 2006, 117:2504-511. CrossRef
    7. Furubayashi T, Ushiyama A, Terao Y, Mizuno Y, Shirasawa K, Pongpaibool P, Simba AY, Wake K, Nishikawa M, Miyawaki K, Yasuda A, Uchiyama M, Yamashita HK, Masuda H, Hirota S, Takahashi M, Okano T, Inomata-Terada S, Sokejima S, Maruyama E, Watanabe S, Taki M, Ohkubo C, Ugawa Y: Effects of short-term W-CDMA mobile phone base station exposure on women with or without mobile phone related symptoms. / Bioelectromagnetics 2009, 30:100-13. CrossRef
    8. Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H: Non-thermal DNA breakage by mobile-phone radiation (1800MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. / Mutat Res 2005, 583:178-83.
    9. Vijayalaxmi , McNamee JP, Scarfì MR: Comments on: "DNA strand breaks" by Diem et al . [Mutat. Res. 583 (2005) 178-83] and Ivancsits et al . [Mutat. Res.583 (2005) 184-88]. / Mutat Res 2006, 603:104-06.
    10. Schüz J, B?hler E, Berg G, Schlehofer B, Hettinger I, Schlaefer K, Wahrendorf J, Kunna-Grass K, Blettner M: Cellular phones, cordless phones, and the risk of glioma and meningioma (Interphone study group, Germany). / Am J Epidemiol 2006, 163:512-20. CrossRef
    11. Hepworth SJ, Schoemaker MJ, Muir KR, Swerdlow AJ, van Tongeren MJ, McKinney PA: Mobile phone use and risk of glioma in adults: case-control study. / BMJ 2006, 332:883-87. CrossRef
    12. Deltour I, Johansen C, Auvinen A, Feychting M, Klaeboe L, Schüz J: Time Trends in Brain Tumor Incidence Rates in Denmark, Finland, Norway, and Sweden, 1974 - 2003. J Natl Cancer Inst 2009, 101:1721-724. Hardell L, Carlberg M. Mobile phones, cordless phones and the risk for brain tumours. / Int J Oncol 2009, 35:5-7.
    13. Sobel E, Davanipour Z, Sulkava R, Erkinjuntti T, Wikstrom J, Henderson VW, Buckwalter G, Bowman JD, Lee PJ: Occupations with Exposure to Electromagnetic Fields: A Possible Risk Factor for Alzheimer's Disease. / Am J Epidemiol 1995, 142:515-24.
    14. Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC: Elevated risk of Alzheimer's disease among workers with likely electromagnetic field exposure. / Am Acad Neurol 1996, 47:1477-481.
    15. Garc?a AM, Sisternas A, Hoyos SP: Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. / Int J Epidemiol 2008, 37:329-40. CrossRef
    16. Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann KA: Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. / Neuroscience 1997, 81:627-39. CrossRef
    17. Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Sèze R: Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. / Neurobiol dis 2004, 17:445-54. CrossRef
    18. Brillaud E, Piotrowski A, de Seze R: Effect of an acute 900MHz GSM exposure on glia in the rat brain: A time-dependent study. / Toxicol 2007, 238:23-3. CrossRef
    19. Ammari M, Brillaud E, Gamez C, Lecomte A, Sakly M, Abdelmelek H, de Seze R: Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. / Biomed Pharmacother 2008, 62:273-81. CrossRef
    20. Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. / Science 2005, 308:1314-318. CrossRef
    21. Fetler L, Amigorena S: Neuroscience. Brain under surveillance: the microglia patrol. / Science 2005, 309:392-93. CrossRef
    22. Upender MB, Naegele JR: Activation of microglia during developmentally regulated cell death in the cerebral cortex. / Dev Neurosci 1999, 21:491-05. CrossRef
    23. Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. / Glia 2002, 40:133-39. CrossRef
    24. Liao H, Bu WY, Wang TH, Ahmed S, Xiao ZC: Tenascin-R plays a role in neuroprotection via its distinct domains coordinate to modulate the microglia function. / J Biol Chem 2004, 280:8316-323. CrossRef
    25. Harry GJ, McPherson CA, Wine RN, Atkinson K, Lefebvre d'Hellencourt C: Trimethyltin-induced neurogenesis in the murine hippocampus. / Neurotox Res 2004, 5:623-27. CrossRef
    26. Town T, Nikolic V, Tan J: The microglial 'activation' continuum: from innate to adaptive responses. / J Neuroinflammation 2005, 2:24. CrossRef
    27. Garden GA, Moller T: Microglia biology in health and disease. / J Neuroimmune Pharmacol 2006, 1:127-37. CrossRef
    28. Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. / Nature Neurosci 2007, 10:1387-394. CrossRef
    29. Colton CA, Gilbert DL: Production of superoxide anions by a CNS macrophage, the microglia. / FEBS Lett 1987, 223:284-88. CrossRef
    30. Ii M, Sunamoto M, Ohnishi K, Ichimori Y: β-amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. / Brain Res 1996, 720:93-00. CrossRef
    31. Moss DW, Bates TE: Activation of murine microglial cell lines by lipopolysaccharide and interferon-γ causes NO-mediated decreases in mitochondrial and cellular function. / Eur J Neurosci 2001, 13:529-38. CrossRef
    32. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS: Role of nitric oxide in inflammation-mediated neurodegeneration. / Ann NY Acad Sci 2002, 962:318-31. CrossRef
    33. Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-α by microglia and astrocytes in culture. / Brain Res 1989, 491:394-97. CrossRef
    34. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW: Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1β. / J Immunol 1993, 150:2659-667.
    35. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE: Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. / Brain Pathol 1998, 8:65-2. CrossRef
    36. Dheen ST, Jun Y, Yan Z, Tay SS, Ang Ling E: Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. / Glia 2005, 50:21-1. CrossRef
    37. Tichauer J, Saud K, von Bernhardi R: Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. / Neuroimmunomodulation 2007, 14:168-74. CrossRef
    38. Harry GJ, Kraft AD: Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. / Expert Opin Drug Metab Toxicol 2008, 4:1265-277. CrossRef
    39. Venneti S, Wiley CA, Kofler J: Imaging microglial activation during neuroinflammation and Alzheimer's disease. / J Neuroimmune Pharmacol 2009, 4:227-43. CrossRef
    40. Ock J, Han HS, Hong SH, Lee SY, Han YM, Kwon BM, Suk K: Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. / Br J Pharmacol 2010, 159:1646-662. CrossRef
    41. Mhatre M, Floyd RA, Hensley K: Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophicl ateral sclerosis: common links and potential therapeutic targets. / J Alzheimer's Dis 2004, 6:147-57.
    42. Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. / Exp Neurol 2007, 208:1-5. CrossRef
    43. Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson's disease. / Br J Pharmacol 2007, 150:963-76. CrossRef
    44. McGeer PL, McGeer EG: Inflammatory processes in amyotrophic lateral sclerosis. / Muscle Nerve 2002, 26:459-70. CrossRef
    45. Sargsyan SA, Monk PN, Shaw PJ: Microglia as potential contributors to motor neuroninjury in amyotrophic lateral sclerosis. / Glia 2005, 51:241-53. CrossRef
    46. Weydt P, Moller T: NeuroInflammation in the pathogenesis of amyotrophic lateralsclerosis. / Neuro Report 2005, 16:527-31.
    47. Jung HW, Yoon CH, Park KM, Han HS, Park YK: Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proInflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. / Food and Chem Toxicol 2009, 47:1190-197. CrossRef
    48. Lee MH, Kim JY, Ryu JH: Prenylflavones from Psoralea corylifolia Inhibit Nitric Oxide Synthase Expression through the Inhibition of I-κB-αDegradation in Activated Microglial Cells. / Biol Pharm Bull 2005, 28:2253-257. CrossRef
    49. Chang LC, Tsao LT, Chang CS, Chen CJ, Huang LJ, Kuo SC, Lin RH, Wang JP: Inhibition of nitric oxide production by the carbazole compound LCY-2-CHO via blockade of activator protein-1 and CCAAT/enhancer-binding protein activation in microglia. / Biochem Pharmacol 2008, 76:507-19. CrossRef
    50. Justicia C, Gabriel C, Planas AM: Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. / Glia 2000, 30:253-70. CrossRef
    51. Satriotomo I, Kellie K, Bowen RV: JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. / J Neurochem 2006, 98:1353-368. CrossRef
    52. Pawate S, Shen Q, Fan F, Bhat NR: Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. / J neurosci res 2004, 77:540-51. CrossRef
    53. Kim OS, Park EJ, Joe EH, Jou I: JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. / J Biol Chem 2002, 277:40594-0601. CrossRef
    54. Huang CF, Ma R, Sun SG, Wei GR, Fang Y, Liu RG, Li G: JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. / J Neuroimmunol 2008, 204:118-25. CrossRef
    55. Natarajan C, Sriram S, Muthlan G, Bright JJ: Signaling through JAK2-STAT5 pathway is essential for IL-3-induced activation of microglia. / Glia 2004, 45:188-96. CrossRef
    56. Hao YT, Yang XS, Chen CH, Wang Y, Wang XB, Li MQ, Yu ZP: STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. / Int J Radiat Biol 2010, 86:27-6. CrossRef
    57. Nakamura Y: Regulating Factors for Microglial Activation. / Biol Pharm Bull 2002, 25:945-53. CrossRef
    58. Righi M, Mori L, DeLibero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. / Eur J Immunol 1989, 19:1443-448. CrossRef
    59. Corradin SB, Mau?l J, Donini SD, Quattrocchi E, Ricciardi-Castagnoli P: Inducible nitric oxide synthase activity of cloned murine microglial cells. / Glia 1993, 7:255-62. CrossRef
    60. Bahr A, Bolz T, Hennes C: Numerical dosimetry ELF: Accuracy of the method, variability of models and parameters, and the implication for quantifying guidelines. / Health Phys 2007, 92:521-30. CrossRef
    61. Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. / Trends Neurosci 1996, 19:312-18. CrossRef
    62. Liva SM, Kahn MA, Dopp JM, de Vellis J: Signal Transduction Pathways induced by GM-CSF in Microglia: Significance in the Control of Proliferation. / Glia 1999, 26:344-52. CrossRef
    63. Ling EA, Wong WC: The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. / Glia 1993, 7:9-8. CrossRef
    64. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK: Role of microglia in central nervous system infections. / Clin Microbiol Rev 2004, 17:942-64. CrossRef
    65. Roy A, Fung YK, Liu XJ, Pahan K: Up-regulation of Microglial CD11b Expression by Nitric Oxide. / J Biol Chem 2006, 281:14971-4980. CrossRef
    66. Shuai K, Stark GR, Kerr IM, Darnell JE Jr: A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. / Science 1993, 261:1744-746. CrossRef
    67. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD: How cells respond to interferons? / Annu Rev Biochem 1998, 67:227-64. CrossRef
    68. González-Scarano F, Baltuch G: Microglia as mediators of inflammatory and degenerative diseases. / Annu Rev Neurosci 1999, 22:219-40. CrossRef
    69. Kudo M, Fujita K, Niyaz M, Matsuyama N: Immunohistochemical findings that exposure to 915 MHz Global System for Mobile Communications (GSM) mobile phone microwaves activates microglia in rat brain. / J Tokyo Med Univ 2007, 65:29-6.
    70. Thorlin T, Rouquette JM, Hamnerius Y, Hansson E, Persson M, Bj?rklund U, Rosengren L, R?nnb?ck L, Persson M: Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation. / Radiat Res 2006, 166:409-21. CrossRef
    71. Finnie JW, Cai H, Manavis J, Helps S, Blumbergs PC: Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields. / Pathol 2010, 42:151-54. CrossRef
    72. Hirose H, Sasaki A, Ishii N, Sekijima M, Iyama T, Nojima T, Ugawa Y: 1950 MHz IMT-2000 Field Does Not Activate Microglial Cells In Vitro. / Bioelectromagnetics 2010, 31:104-12.
    73. IEEE EMF HEALTH & SAFETY STANDARDS [http://www.who.int/peh-emf/meetings/southkorea/en/IEEE_EMF_HEALTH_-_Mason.pdf]
    74. Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. / Nat Rev Neurosci 2007, 8:57-9. CrossRef
    75. Dheen ST, Kaur C, Ling EA: Microglial activation and its implications in the brain diseases. / Curr Med Chem 2007, 14:1189-197. CrossRef
    76. Choi SH, Lee DY, Kim SU, Jin BK: Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. / J Neurosci 2005, 25:4082-090. CrossRef
    77. Tian DS, Xie MJ, Yu ZY, Zhang Q, Wang YH, Chen B, Chen C, Wang W: Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. / Brain Res 2007, 1135:177-85. CrossRef
    78. Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL, Yang JY: Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. / Neurosci Lett 2008, 447:48-3. CrossRef
    79. Gebicke-Haerter PJ, Van Calker D, N?renberg W, Illes P: Molecular mechanisms of microglial activation. A. Implications for regeneration and neurodegenerative diseases. / Neurochem Int 1996, 29:1-2. CrossRef
    80. De-Fraja C, Conti L, Magrassi L, Govoni S, Cattaneo E: Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. / J Neurosci Res 1998, 54:320-30. CrossRef
    81. Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT Inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. / J Immunol 2003, 171:6072-079.
    82. Liang YJ, Jin Y, Li YN: Expression of JAKs/STATs pathway molecules in rat model of rapid focal segmental glomerulosclerosis. / Pediatr Nephrol 2009, 24:1661-671. CrossRef
    83. Choi WH, Ji KA, Jeon SB, Yang MS, Kim H, Min KJ, Shong M, Jou I, Joe EH: Anti-Inflammatory roles of retinoic acid in rat brain astrocytes: suppression of interferon-gamma-induced JAK/STAT phosphorylation. / Biochem Biophys Res Commun 2005, 329:125-31. CrossRef
    84. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H: Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. / Nat Med 2006, 12:829-34. CrossRef
    85. Leung YK, Pankhurst M, Dunlop SA, Ray S, Dittmann J, Eaton ED, Palumaa P, Sillard R, Chuah MI, West AK, Chung RS: Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. / Exp Neurol 2010, 221:98-06. CrossRef
    86. Hashioka S, Klegeris A, Schwab C, McGeer PL: Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. / Neurobiol Aging 2009, 30:1924-935. CrossRef
    87. Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J, Bornmann W, Bromberg J: Pyridone6, apan-Janus-activated kinase inhibitor, induces growth in hibition of multiple myeloma cells. / Cancer Res 2006, 66:9714-721. CrossRef
    88. Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, Rossjohn J: The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. / Blood 2006, 107:176-83. CrossRef
    89. Chang Y, Lee JJ, Hsieh CY, Hsiao G, Chou DS, Sheu JR: Inhibitory effects of ketamine on lipopolysaccharide-induced microglial activation. / Mediators Inflamm 2009, 2009:705379. CrossRef
    90. Ryu J, Pyo H, Jou I, Joe E: Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. / J Biol Chem 2000, 275:29955-9959. CrossRef
    91. Peterson PK, Hu S, Salak-Johnson J, Molitor TW, Chao CC: Differential production of and migratory response to chemokines by human microglia and astrocytes. / J Infect Dis 1997, 175:478-81.
    92. Pfitzner E, Kliem S, Baus D, Litterst CM: The role of STATs in inflammation and inflammatory diseases. / Curr Pharm Des 2004, 10:2839-850. CrossRef
    93. Yu H, Pardoll D, Jove R: STATs in cancer inflammation and immunity: a leading role for STAT3. / Nat Rev Cancer 2009, 9:798-09. CrossRef
    94. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O: Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. / J Neuroinflammation 2010, 7:16. CrossRef
    95. Mir M, Tolosa L, Asensio VJ, Lladó J, Olmos G: Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. / J Neuroimmunol 2008, 204:101-09. CrossRef
    96. Du F, Yin L, Shi M, Cheng H, Xu X, Liu Z, Zhang G, Wu Z, Feng G, Zhao G: Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor. / Neuroscience 2010, 167:909-19. CrossRef
    97. Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W, Wu G: Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. / Brain Res 2010, 1316:101-11. CrossRef
    98. Hwang SY, Jung JS, Kim TH, Lim SJ, Oh ES, Kim JY, Ji KA, Joe EH, Cho KH, Han IO: Ionizing radiation induces astrocyte gliosis through microglia activation. / Neurobiol Dis 2006, 21:457-67. CrossRef
    99. de Gannes FM, Merle M, Canioni P, Voisin PJ: Metabolic and cellular characterization of immortalized human microglial cells under heat stress. / Neurochem Int 1998, 33:61-3. CrossRef
    100. Matsui T, Kakeda T: IL-10 Production Is Reduced by Hypothermia but Augmented by Hyperthermia in Rat Microglia. / J Neurotrauma 2008, 25:709-16. CrossRef
  • 作者单位:Xuesen Yang (1) (2)
    Genlin He (1) (2)
    Yutong Hao (3)
    Chunhai Chen (1)
    Maoquan Li (1)
    Yuan Wang (1)
    Guangbin Zhang (1)
    Zhengping Yu (1)

    1. Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, 400038, China
    2. Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, China
    3. International Travel Healthcare Center, Chongqing Entry-Exit Inspection and Quarantine Bureau, Chongqing, 401147, China
  • ISSN:1742-2094
文摘
Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-Inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that the JAK2-STAT3 pathway may not mediate this initial microglial activation but does promote pro-inflammatory responses in EMF-stimulated microglial cells. Thus, the JAK2-STAT3 pathway might be a therapeutic target for reducing pro-inflammatory responses in EMF-activated microglia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700