用户名: 密码: 验证码:
A new Al2O3 porous ceramic prepared by addition of hollow spheres
详细信息    查看全文
  • 作者:Zhenguo Su ; Xiaoqing Xi ; Yanjun Hu ; Qi Fei ; Shicheng Yu…
  • 关键词:Al2O3 hollow spheres ; Porous ceramic ; Microstructure ; Compressive strength ; Thermal conductivity
  • 刊名:Journal of Porous Materials
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:21
  • 期:5
  • 页码:601-609
  • 全文大小:2,128 KB
  • 参考文献:1. Z.R. Ismagilov, R.A. Shkrabina, N.A. Koryabkina, A.A. Kirchanov, H. Veringa, P. Pex, Porous alumina as a support for catalysts and membranes. Preparation and study. React. Kinet. Catal. Lett. 60, 225-31 (1997) CrossRef
    2. Y.M. Jo, R.B. Hutchison, J.A. Raper, Characterization of ceramic composite membrane filters for hot gas cleaning. Powder Technol. 91, 55-2 (1997) CrossRef
    3. P.M. Then, P. Day, The catalytic converter ceramic substrate: an astonishing and enduring invention. Interceram 49, 20-3 (2000)
    4. M.I. Nieto, R. Martinez, M. Leo, C. Baudin, Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles. J. Eur. Ceram. Soc. 24, 2293-301 (2004) CrossRef
    5. H.R. Ramay, M.Q. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24, 3293-302 (2003) CrossRef
    6. O. Lyckfeldt, J.M.F. Ferreira, Processing of porous ceramics by ‘starch consolidation- J. Eur. Ceram. Soc. 18, 131-40 (1998) CrossRef
    7. J.L. Yu, J.L. Yang, H.X. Li, X.Q. Xi, Y. Huang, Study on particle-stabilized Si3N4 ceramic foams. Mater. Lett. 65, 1801-804 (2011) CrossRef
    8. J.M. Qian, J.P. Wang, G.J. Qiao, Z.H. Jin, Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc. 24, 3251-259 (2004) CrossRef
    9. H. Ghanem, M. Kormann, H. Gerhard, N. Popovska, Processing of biomorphic porous TiO2 ceramics by chemical vapor infiltration and reaction (CVI-R) technique. J. Eur. Ceram. Soc. 27, 3433-438 (2007) CrossRef
    10. D.A. Streitwieser, N. Popovska, H. Gerhard, Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI). J. Eur. Ceram. Soc. 26, 2381-387 (2006) CrossRef
    11. L. Min, C. Jia, M. Jing, C. Xiao-Hu, W. Bin-Jian, Biomimetic synthesis of porous Si3N4 ceramics. J. Inorg. Mater. 23, 764-69 (2008)
    12. O.P. Chakrabarti, H.S. Maiti, R. Majumdar, Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 27, 467-70 (2004) CrossRef
    13. Y.T. Zheng, H.B. Li, W. Zhou, X.N. Zhang, G.R. Ye, Combustion synthesis and characteristics of aluminum oxynitride ceramic foams. Ceram. Int. 38, 5139-144 (2012) CrossRef
    14. J.F. Qiu, J.T. Li, K.L. Smirnov, Combustion synthesis of high porosity SiC foam with nanosized grains. Ceram. Int. 36, 1901-904 (2010) CrossRef
    15. H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, Microstructure of ceramic foams. J. Eur. Ceram. Soc. 20, 807-13 (2000) CrossRef
    16. J. Luyten, S. Mullens, J. Cooymans, A.M.D. Wilde, I. Thijs, R. Kemps, Different methods to synthesize ceramic foams. J. Eur. Ceram. Soc. 29, 829-32 (2009) CrossRef
    17. I. Thijs, J. Luyten, S. Mullens, Producing ceramic foams with hollow spheres. J. Am. Ceram. Soc. 87, 170-72 (2004) CrossRef
    18. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526-530 (2006) CrossRef
    19. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Stabilization of foams with inorganic colloidal particles. Langmuir 22, 10983-0988 (2006) CrossRef
    20. U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90, 16-2 (2007) CrossRef
    21. Yang JL, Cai K, Xi, XQ, Ge GJ, Huang Y. Method and device for producing hollow microspheres. China Invention Patent 200910131051.7; 2010
    22. J.S. Ha, Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength. Ceram. Int. 26, 251-54 (2000) CrossRef
    23. X.J. Mao, S. Shimai, S.W. Wang, Effects of coarse particles on the gelcasting of ceramic foams. J. Am. Ceram. Soc. 91, 2412-414 (2008) CrossRef
    24. X.J. Mao, S. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217-22 (2008) CrossRef
    25. X.J. Mao, S. Shimai, S.W. Wang, M.J. Dong, L.L. Jin, Rheological characterization of a gelcasting system based on epoxy resin. Ceram. Int. 35, 415-20 (2009) CrossRef
    26. M.L. Sun, / The application and technics of epoxy resin (Mechanical Industry Press, China, 2002)
    27. X.J. Mao, S.Z. Shimai, S.W. Wang, Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28, 217-22 (2008) CrossRef
    28. Z. Zivcova, E. Gregorova, P. Willi, D.S. Smith, A. Michot, C. Poulier, Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347-53 (2009) CrossRef
  • 作者单位:Zhenguo Su (1)
    Xiaoqing Xi (1)
    Yanjun Hu (1) (2)
    Qi Fei (1)
    Shicheng Yu (1)
    Hui Li (1)
    Jinlong Yang (1)

    1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
    2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
  • ISSN:1573-4854
文摘
A method for making porous ceramic prepared by adding hollow spheres was developed, and the resulting porous ceramic was named as hollow spheres ceramic. Water soluble epoxy resin was used as a gel former in the gelcasting process of the Al2O3 hollow sphere and Al2O3 powder, the porous ceramic porosity varies from 22.3 to 60.1?%. The influence of amount of Al2O3 hollow sphere and sintering temperature on the microstructure, compressive strength and thermal conductivity were investigated. With an increasing amount of hollow sphere in the matrix, the porosity increases, which leads to decreased bulk density, compressive strength and thermal conductivity. The compressive strength of the porous ceramics has a power law relation with the porosity, and the calculated power law index is 4.5. The equations of the relationship between porosity and thermal conductivity of porous ceramics are proposed. The thermal conductivity of samples with 60.1?% porosity is as low as 2.1?W/m?k at room temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700