用户名: 密码: 验证码:
Identification of candidate genes for human pituitary development by EST analysis
详细信息    查看全文
  • 作者:Yueyun Ma (1)
    Xiaofei Qi (2)
    Jianjun Du (3)
    Shaojun Song (4)
    Dongyun Feng (4)
    Jia Qi (2)
    Zhidong Zhu (2)
    Xin Zhang (2)
    Huasheng Xiao (2)
    Zeguang Han (2)
    Xiaoke Hao (1)
  • 刊名:BMC Genomics
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:1189KB
  • 参考文献:1. Yeung CM, Chan CB, Leung PS, Cheng CH: Cells of the anterior pituitary. / Int J Biochem Cell Biol 2006,38(9):1441-449. CrossRef
    2. Rizzoti K, Lovell–Badge R: Early development of the pituitary gland: induction and shaping of Rathke's pouch. / Rev Endocr Metab Disord 2005,6(3):161-72. CrossRef
    3. Zhu X, Wang J, Ju BG, Rosenfeld MG: Signaling and epigenetic regulation of pituitary development. / Curr Opin Cell Biol 2007,19(6):605-11. CrossRef
    4. Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG: Multistep signaling requirements for pituitary organogenesis in vivo. / Genes Dev 1998,12(11):1691-704. CrossRef
    5. Scully KM, Rosenfeld MG: Pituitary development: regulatory codes in mammalian organogenesis. / Science 2002,295(5563):2231-235. CrossRef
    6. Sheng HZ, Westphal H: Early steps in pituitary organogenesis. / Trends Genet 1999,15(6):236-40. CrossRef
    7. Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, Camper SA: WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. / Dev Dyn 2008,237(4):1006-020. CrossRef
    8. Kita A, Imayoshi I, Hojo M, Kitagawa M, Kokubu H, Ohsawa R, Ohtsuka T, Kageyama R, Hashimoto N: Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. / Mol Endocrinol 2007,21(6):1458-466. CrossRef
    9. Bastos E, Avila S, Cravador A, Renaville R, Guedes–Pinto H, Castrillo JL: Identification and characterization of four splicing variants of ovine POU1F1 gene. / Gene 2006, 382:12-9. CrossRef
    10. Wilson LD, Ross SA, Lepore DA, Wada T, Penninger JM, Thomas PQ: Developmentally regulated expression of the regulator of G–protein signaling gene 2 (Rgs2) in the embryonic mouse pituitary. / Gene Expr Patterns 2005,5(3):305-11. CrossRef
    11. Ma YY, Qi XF, Song SJ, Zhao ZY, Zhu ZD, Qi J, Zhang X, Xiao HS, Teng Y, Han ZG: cDNA microarray reveals signaling pathways involved in hormones expression of human pituitary. / Gen Comp Endocrinol 2005,143(2):184-92. CrossRef
    12. Ellestad LE, Carre W, Muchow M, Jenkins SA, Wang X, Cogburn LA, Porter TE: Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. / Physiol Genomics 2006,25(3):414-25. CrossRef
    13. Gou DM, Chow LM, Chen NQ, Jiang DH, Li WX: Construction and characterization of a cDNA library from 4–week–old human embryo. / Gene 2001,278(1-):141-47. CrossRef
    14. Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, Suel L, Durand M, Robson S, Abitbol M, / et al.: Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes. / Hum Mol Genet 2000,9(2):165-73. CrossRef
    15. Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, / et al.: Gene expression profiling in the human hypothalamus–pituitary–adrenal axis and full–length cDNA cloning. / Proc Natl Acad Sci USA 2000,97(17):9543-548. CrossRef
    16. Lioubinski O, Muller M, Wegner M, Sander M: Expression of Sox transcription factors in the developing mouse pancreas. / Dev Dyn 2003,227(3):402-08. CrossRef
    17. Reppe S, Rian E, Jemtland R, Olstad OK, Gautvik VT, Gautvik KM: Sox- messenger RNA is expressed in the embryonic growth plate and regulated via the parathyroid hormone/parathyroid hormone–related protein receptor in osteoblast–like cells. / J Bone Miner Res 2000,15(12):2402-412. CrossRef
    18. Kelberman D, Dattani MT: Hypothalamic and pituitary development: novel insights into the aetiology. / Eur J Endocrinol 2007,157(Suppl 1):S3-4. CrossRef
    19. Dasen JS, Rosenfeld MG: Signaling and transcriptional mechanisms in pituitary development. / Annu Rev Neurosci 2001, 24:327-55. CrossRef
    20. Ben–Jonathan N, Hnasko R: Dopamine as a prolactin (PRL) inhibitor. / Endocr Rev 2001,22(6):724-63. CrossRef
    21. Ciccone NA, Lacza CT, Hou MY, Gregory SJ, Kam KY, Xu S, Kaiser UB: A composite element that binds basic helix loop helix and basic leucine zipper transcription factors is important for gonadotropin–releasing hormone regulation of the follicle–stimulating hormone beta gene. / Mol Endocrinol 2008,22(8):1908-923. CrossRef
    22. Leo CP, Hsu SY, Hsueh AJ: Hormonal genomics. / Endocr Rev 2002,23(3):369-81. CrossRef
    23. Li P, Peatman E, Wang S, Feng J, He C, Baoprasertkul P, Xu P, Kucuktas H, Nandi S, Somridhivej B, / et al.: Towards the ictalurid catfish transcriptome: generation and analysis of 31,215 catfish ESTs. / BMC Genomics 2007, 8:177. CrossRef
    24. Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L: Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. / BMC Genomics 2008, 9:166. CrossRef
    25. Ojopi EP, Oliveira PS, Nunes DN, Paquola A, DeMarco R, Gregorio SP, Aires KA, Menck CF, Leite LC, Verjovski–Almeida S, / et al.: A quantitative view of the transcriptome of Schistosoma mansoni adult–worms using SAGE. / BMC Genomics 2007, 8:186. CrossRef
    26. Cheung M, Abu–Elmagd M, Clevers H, Scotting PJ: Roles of Sox4 in central nervous system development. / Brain Res Mol Brain Res 2000,79(1-):180-91. CrossRef
    27. Nelson GM, Prapapanich V, Carrigan PE, Roberts PJ, Riggs DL, Smith DF: The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. / Mol Endocrinol 2004,18(7):1620-630. CrossRef
    28. Yang M, Cao X, Yu MC, Gu JF, Shen ZH, Ding M, Yu de B, Zheng S, Liu X: Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. / Hum Gene Ther 2008,19(4):343-53. CrossRef
    29. McElvaine AT, Korytko AI, Kilen SM, Cuttler L, Mayo KE: Pituitary–specific expression and Pit- regulation of the rat growth hormone–releasing hormone receptor gene. / Mol Endocrinol 2007,21(8):1969-983. CrossRef
    30. Weiss MA: Floppy SOX: mutual induced fit in hmg (high–mobility group) box–DNA recognition. / Mol Endocrinol 2001,15(3):353-62. CrossRef
    31. Schafer AJ, Goodfellow PN: Sex determination in humans. / Bioessays 1996,18(12):955-63. CrossRef
    32. Wegner M: From head to toes: the multiple facets of Sox proteins. / Nucleic Acids Res 1999,27(6):1409-420. CrossRef
    33. Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, Wetering M, Verbeek S, Lamers WH, Kruisbeek AM, Cumano A, / et al.: Defects in cardiac outflow tract formation and pro–B–lymphocyte expansion in mice lacking Sox-. / Nature 1996,380(6576):711-14. CrossRef
    34. Schilham MW, Moerer P, Cumano A, Clevers HC: Sox- facilitates thymocyte differentiation. / Eur J Immunol 1997,27(5):1292-295. CrossRef
    35. Hunt SM, Clarke CL: Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. / Biol Reprod 1999,61(2):476-81. CrossRef
    36. Hoser M, Baader SL, Bosl MR, Ihmer A, Wegner M, Sock E: Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. / J Neurosci 2007,27(20):5495-505. CrossRef
    37. Potzner MR, Griffel C, Lutjen–Drecoll E, Bosl MR, Wegner M, Sock E: Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. / Mol Cell Biol 2007,27(15):5316-326. CrossRef
    38. Fauquier T, Rizzoti K, Dattani M, Lovell–Badge R, Robinson IC: SOX2–expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. / Proc Natl Acad Sci USA 2008,105(8):2907-912. CrossRef
    39. Kelberman D, de Castro SC, Huang S, Crolla JA, Palmer R, Gregory JW, Taylor D, Cavallo L, Faienza MF, Fischetto R, / et al.: SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. / J Clin Endocrinol Metab 2008,93(5):1865-873. CrossRef
    40. Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell–Badge R: SOX3 is required during the formation of the hypothalamo–pituitary axis. / Nat Genet 2004,36(3):247-55. CrossRef
    41. Whitlock KE, Smith KM, Kim H, Harden MV: A role for foxd3 and sox10 in the differentiation of gonadotropin–releasing hormone (GnRH) cells in the zebrafish Danio rerio. / Development 2005,132(24):5491-502. CrossRef
    42. Schweppe RE, Melton AA, Brodsky KS, Aveline LD, Resing KA, Ahn NG, Gutierrez–Hartmann A: Purification and mass spectrometric identification of GA–binding protein (GABP) as the functional pituitary Ets factor binding to the basal transcription element of the prolactin promoter. / J Biol Chem 2003,278(19):16863-6872. CrossRef
    43. Kim K, Yoshida D, Teramoto A: Expression of hypoxia–inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. / Endocr Pathol 2005,16(2):115-21. CrossRef
    44. Tian C, Lv D, Qiao H, Zhang J, Yin YH, Qian XP, Wang YP, Zhang Y, Chen WF: TFDP3 inhibits E2F1–induced, p53–mediated apoptosis. / Biochem Biophys Res Commun 2007,361(1):20-5. CrossRef
    45. Richert MM, Wood TL: The insulin–like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. / Endocrinology 1999,140(1):454-61. CrossRef
  • 作者单位:Yueyun Ma (1)
    Xiaofei Qi (2)
    Jianjun Du (3)
    Shaojun Song (4)
    Dongyun Feng (4)
    Jia Qi (2)
    Zhidong Zhu (2)
    Xin Zhang (2)
    Huasheng Xiao (2)
    Zeguang Han (2)
    Xiaoke Hao (1)

    1. Center for Clinical Laboratory Medicine of PLA Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
    2. Chinese National Human Genome Center at Shanghai, 351 Guo Shou-Jing Road, 201203, Shanghai, PR China
    3. Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
    4. Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
文摘
Background The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST) sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development. Results A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHβ, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue. Conclusion The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST sequencing is an efficient means of gene discovery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700