用户名: 密码: 验证码:
β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs
详细信息    查看全文
  • 作者:Shaonan Lv (1)
    Meiqin Zhao (1)
    Changjing Cheng (1)
    Zhigang Zhao (1)
  • 关键词:Magnetic colloidal nanocrystal clusters ; Functionalization ; Polymer brushes ; β ; Cyclodextrin ; SI ; ATRP ; Nanomedicine
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:16
  • 期:5
  • 全文大小:980 KB
  • 参考文献:1. Barbey R, Lavanant L, Paripovic D et al (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437-527. doi:10.1021/cr900045a CrossRef
    2. Cai K, Li J, Luo Z et al (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719-721. doi:10.1039/c1cc11855b CrossRef
    3. Cao H, He J, Deng L et al (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974-980. doi:10.1016/j.apsusc.2009.04.199 CrossRef
    4. Chen H, Deng C, Zhang X (2010) Synthesis of Fe3O4@SiO2@PMMA core–shell–shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. Angew Chem Int Ed 49:607-11. doi:10.1002/anie.200904885 CrossRef
    5. Deng H, Li XL, Peng Q et al (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782-785. doi:10.1002/anie.200462551 CrossRef
    6. Fan XJ, Jiao GZ, Zhao W et al (2013) Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143-152. doi:10.1039/c2nr33158f CrossRef
    7. Gao J, Ran X, Shi C et al (2013) One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale 5:7026-033. doi:10.1039/c3nr00931a CrossRef
    8. Ge J, Hu Y, Biasini M et al (2007a) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342-345. doi:10.1002/anie.200700197 CrossRef
    9. Ge J, Hu Y, Zhang T et al (2007b) Superparamagnetic composite colloids with anisotropic structures. J Am Chem Soc 129:8974-975. doi:10.1021/ja0736461 CrossRef
    10. Ge J, Huynh T, Hu Y et al (2008) Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett 8:931-34. doi:10.1021/nl080020f CrossRef
    11. Hayashi K, Ono K, Suzuki H et al (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2:1903-911. doi:10.1021/am100237p CrossRef
    12. He L, Wang M, Ge J et al (2012) Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res 45:1431-440. doi:10.1021/ar200276t CrossRef
    13. Korsmqer RW, Gumy R et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25-5. doi:10.1016/0378-5173(83)90064-9 CrossRef
    14. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064-110. doi:10.1021/cr068445e CrossRef
    15. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575-589. doi:10.1039/c1cs15248c CrossRef
    16. Li J, Chen C, Zhao Y et al (2013) Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem Eng J 229:296-03. doi:10.1016/j.cej.2013.06.016 CrossRef
    17. Liu YY, Fan XD, Gao L (2003) Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with / N-isopropylacrylamide. Macromol Biosci 3:715-19. doi:10.1002/mabi.200300052 CrossRef
    18. Liu J, Sun Z, Deng Y et al (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875-879. doi:10.1002/anie.200901566 CrossRef
    19. Lu Z, Yin Y (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41:6874-887. doi:10.1039/C2CS35197H CrossRef
    20. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222-244. doi:10.1002/anie.200602866 CrossRef
    21. Luo B, Song X, Zhang F et al (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674-679. doi:10.1021/la902635k CrossRef
    22. Luo Z, Cai K, Hu Y et al (2012) Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv Mater 24:431-35. doi:10.1002/adma.201103458 CrossRef
    23. Mahmoudi M, Sant S, Wang BE et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24-6. doi:10.1016/j.addr.2010.05.006 CrossRef
    24. Markova N, Enchev V, Ivanova G (2010) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem A 114:13154-3162. doi:10.1021/jp806751k CrossRef
    25. Moorthy MS, Bae J-H, Kim M-J et al (2013) Design of a novel mesoporous organosilica hybrid microcarrier: a ph stimuli-responsive dual-drug-delivery vehicle for intracellular delivery of anticancer agents. Part Part Syst Charact 30:1044-055. doi:10.1002/ppsc.201300164 CrossRef
    26. Oha JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168-89. doi:10.1016/j.progpolymsci.2010.08.005 CrossRef
    27. Pandey H, Parashar V, Parashar R et al (2011) Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 3:4104-108. doi:10.1039/c1nr10661a CrossRef
    28. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1-5. doi:10.1016/0169-409X(93)90025-Y CrossRef
    29. Petter RC, Salek JS, Sikorski CT et al (1990) Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J Am Chem Soc 112:3860-868. doi:10.1021/ja00166a021 CrossRef
    30. Reddy LH, Arias JL, Nicolas J et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818-878. doi:10.1021/cr300068p CrossRef
    31. Ritger P, Peppas N (1987a) A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23-6. doi:10.1016/0168-3659(87)90034-4 CrossRef
    32. Ritger P, Peppas N (1987b) A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release 5:37-2. doi:10.1016/0168-3659(87)90035-6 CrossRef
    33. Thévenot J, Oliveira H, Sandre O et al (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099-116. doi:10.1039/C3CS60058K CrossRef
    34. Veiseh O, Gunn JW, Zhang MQ (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284-04. doi:10.1016/j.addr.2009.11.002 CrossRef
    35. Xu S, Ma W, You L et al (2012) Toward designer magnetite/polystyrene colloidal composite microspheres with controllable nanostructures and desirable surface functionalities. Langmuir 28:3271-278. doi:10.1021/la2043137 CrossRef
    36. Yang XY, Zhang XY, Liu ZF et al (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554-7558. doi:10.1021/jp806751k CrossRef
    37. Yuan ZT, Ye YJ et al (2013) Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm 446:191-98. doi:10.1016/j.ijpharm CrossRef
    38. Zhang Y, Yang Y, Ma W et al (2013) Uniform magnetic core/shell microspheres functionalized with Ni2+–iminodiacetic acid for one step purification and immobilization of his-tagged enzymes. ACS Appl Mater Interfaces 5:2626-633. doi:10.1021/am4006786 CrossRef
    39. Zheng J, Ma C, Sun Y et al (2014) Maltodextrin-modified magnetic microspheres for selective enrichment of maltose binding proteins. ACS Appl Mater Interfaces. doi:10.1021/am405773m
    40. Zhu H, Hou C, Li Y et al (2013) One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization. Chem Asian J 8:1447-454. doi:10.1002/asia.201300026 CrossRef
  • 作者单位:Shaonan Lv (1)
    Meiqin Zhao (1)
    Changjing Cheng (1)
    Zhigang Zhao (1)

    1. College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, Sichuan, People’s Republic of China
  • ISSN:1572-896X
文摘
β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4–Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700