用户名: 密码: 验证码:
Stochastic averaging for nonlinear vibration energy harvesting system
详细信息    查看全文
  • 作者:Ming Xu ; Xiaoling Jin ; Yong Wang ; Zhilong Huang
  • 关键词:Nonlinear vibration energy harvesting ; Stochastic averaging ; Mean ; square electric voltage ; Mean output power ; Generalized harmonic transformation
  • 刊名:Nonlinear Dynamics
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:78
  • 期:2
  • 页码:1451-1459
  • 全文大小:490 KB
  • 参考文献:1. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for micro-systems applications. Meas. Sci. Technol. 17, R175–R195 (2006) CrossRef
    2. Cepnik, C., Lausecker, R., Wallrade, U.: Review on electrodynamic energy harvesters—a classification approach. Micromachines 4, 168-96 (2013) CrossRef
    3. Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867-897 (2010) CrossRef
    4. Zhu, D., Tudor, M.J., Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21, 022001 (2010) CrossRef
    5. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009) CrossRef
    6. Pellegrini, S., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. (2012). doi:10.1177/1045389X12444940
    7. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013) CrossRef
    8. Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21, 035021 (2012) CrossRef
    9. Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D.J.: Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett. 100(11), 114104 (2012) CrossRef
    10. Karami, M.A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330(23), 5583-597 (2011) CrossRef
    11. Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621-631 (2010) CrossRef
    12. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330(11), 2554-564 (2011) CrossRef
    13. Green, P.L., Worden, K., Atallah, K., Sims, N.D.: The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J. Sound Vib. 331(20), 4504-517 (2012) CrossRef
    14. Green, P.L., Worden, K., Atallah, K., Sims, N.D.: The effect of duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations. J. Intell. Mater. Syst. Struct. 23(18), 2039-054 (2012) CrossRef
    15. Green, P.L., Worden, K., Sims, N.D.: On the identification and modelling of friction in a randomly excited energy harvester. J. Sound Vib. 332, 4696-708 (2013) CrossRef
    16. Mendez, V., Campos, D., Horsthemke, W.: Stationary energy probability density of oscillators driven by a random external force. Phys. Rev. E 87(6), 062132 (2013) CrossRef
    17. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94(16), 164102 (2009) CrossRef
    18. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010) CrossRef
    19. Khovanova, N.A., Khovanov, I.A.: The role of excitations statistic and nonlinearity in energy harvesting from random impulsive excitations. Appl. Phys. Lett. 99(14), 144101 (2011) CrossRef
    20. Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E 87(4), 042129 (2013) CrossRef
    21. Ali, S.F., Adhikari, S., Friswell, M.I., Narayanan, S.: The analysis of piezomagnetoelastic energy harvesters under broadband random excitations. J. Appl. Phys. 109(7), 074904 (2011) CrossRef
    22. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063-079 (2012) CrossRef
    23. Martens, W., von Wagner, U., Litak, G.: Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation. Eur. Phys. J. Spec. Top. 222, 1665-673 (2013)
    24. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Application. McGraw-Hill, New York (1995)
    25. Xu, M., Wang, Y., Jin, X.L., Huang, Z.L., Yu, T.X.: Incorporating dissipated impact into random vibration analyses through modified Hertzian contact model. ASCE J. Eng. Mech. 139(12), 1736-743 (2013) CrossRef
    26. Stratonovitch, R.L.: Topics in the Theory of Random Noise. Gordon and Breach Science Publishers, New York (1963)
  • 作者单位:Ming Xu (1)
    Xiaoling Jin (2)
    Yong Wang (2)
    Zhilong Huang (2)

    1. Institute of Fluid Mechanics, China Jiliang University, Hangzhou, 310018, China
    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
  • ISSN:1573-269X
文摘
A stochastic averaging technique for the nonlinear vibration energy harvesting system to Gaussian white noise excitation is developed to analytically evaluate the mean-square electric voltage and mean output power. By introducing the generalized harmonic transformation, the influence of the external circuit on the mechanical system is equivalent to a quasi-linear stiffness and a quasi-linear damping with energy-dependent coefficients, and then the equivalent nonlinear system with respect to the mechanical states is completely established. The It? stochastic differential equation with respect to the mechanical energy of the equivalent nonlinear system is derived through the stochastic averaging technique. Solving the associated Fokker–Plank–Kolmogorov equation yields the stationary probability density of the mechanical states, and then the mean-square electric voltage and mean output power are analytically obtained through the approximate relation between the electric quantity and the mechanical states. The agreements between the analytical results and those from the moment method and from Monte Carlo simulations validate the effectiveness of the proposed technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700