用户名: 密码: 验证码:
Geometry and dynamics of one-norm geometric quantum discord
详细信息    查看全文
  • 作者:Zhiming Huang ; Daowen Qiu ; Paulo Mateus
  • 关键词:One ; norm geometric quantum discord ; Geometry ; Correlated noise ; Quantum phase transition ; XXZ model
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 页码:301-326
  • 全文大小:4,390 KB
  • 参考文献:1.Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)MathSciNet CrossRef ADS
    2.Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)CrossRef ADS
    3.Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)CrossRef ADS
    4.Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)CrossRef ADS
    5.Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)MathSciNet CrossRef ADS
    6.Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80, 052304 (2009)CrossRef ADS
    7.Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRef ADS
    8.Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)CrossRef ADS
    9.Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)CrossRef ADS
    10.Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRef ADS
    11.Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)MathSciNet CrossRef ADS MATH
    12.Modi, K., Paterek, I., Son, W., Vedral, V., Williamson, M.: The classical-quantum boundary for correlations: discord and related measures. Phys. Rev. Lett. 104, 080501 (2010)MathSciNet CrossRef ADS
    13.Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 9, 1837 (2011)MathSciNet CrossRef MATH
    14.Sarandy, M.S., de Oliveira, T.R., Amico, L.: Quantum discord in the ground state of spin chains. Int. J. Mod. Phys. B 27, 1345030 (2013)CrossRef ADS
    15.Bylicka, B., Chruściński, D.: Witnessing quantum discord in \(2\times N\) systems. Phys. Rev. A 81, 062102 (2010)MathSciNet CrossRef ADS
    16.Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)CrossRef ADS
    17.Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)CrossRef ADS
    18.Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)CrossRef ADS
    19.Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)MathSciNet CrossRef ADS
    20.Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)CrossRef ADS
    21.Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRef ADS
    22.Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)CrossRef ADS
    23.Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)CrossRef ADS
    24.Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010)CrossRef ADS
    25.Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)CrossRef ADS
    26.Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)CrossRef ADS
    27.Pinto, J.P.G., Karpat, G., Fanchini, F.F.: Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 (2013)CrossRef ADS
    28.Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)CrossRef ADS
    29.Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)MathSciNet CrossRef ADS
    30.Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)MathSciNet CrossRef ADS
    31.Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)MathSciNet CrossRef ADS
    32.Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)CrossRef ADS
    33.Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)CrossRef ADS
    34.Hu, H., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)CrossRef ADS
    35.Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012)CrossRef ADS
    36.Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)CrossRef ADS
    37.Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)CrossRef ADS
    38.Rana, S., Parashar, P.: Comment on “Witnessed entanglement and the geometric measure of quantum discord”. Phys. Rev. A 87, 016301 (2013)CrossRef ADS
    39.Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)CrossRef ADS
    40.Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)CrossRef ADS
    41.Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)CrossRef ADS
    42.Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of one-norm geometric quantum discord. New J. Phys. 16, 013038 (2014)CrossRef ADS
    43.Yao, Y., Li, H.W., Yin, Z.Q., Han, Z.F.: Geometric interpretation of the geometric discord. Phys. Lett. A 376, 358–364 (2012)CrossRef ADS MATH
    44.Maziero, J., Werlang, T., Fanchini, F.F., Celeri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)CrossRef ADS
    45.Yu, T., Eberly, J.H.: The end of an entanglement. Science 316, 555 (2007)CrossRef
    46.Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)MathSciNet CrossRef ADS MATH
    47.Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109–1124 (2013)MathSciNet CrossRef ADS MATH
    48.Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit–qutrit systems. Quantum Inf. Process. 12, 3421–3435 (2013)MathSciNet CrossRef ADS MATH
    49.Lu, X.M., Xi, Z.J., Sun, Z., Wang, X.: Geometric measure of quantum discord under decoherence. Quantum Inf. Comput. 10, 0994 (2010)MathSciNet
    50.Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)CrossRef ADS
    51.Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)CrossRef ADS
    52.Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)CrossRef ADS
    53.Yao, Y., Li, H.W., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012)CrossRef ADS
    54.Song, X.K., Wu, T., Liu, Y.: Negativity and quantum phase transition in the anisotropic XXZ model. Eur. Phys. J. D 67, 96 (2013)CrossRef ADS
    55.Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)CrossRef ADS
    56.Pefeuty, P., Jullian, R., Penson, K.L.: Chap. 5. In: Burkhardt, T.W., van Leeuwen, J.M.J. (eds.) Real-Space Renormalizaton. Springer, Berlin (1982)
    57.Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)CrossRef ADS
    58.Kim, K., Hwang, M.R., Jung, E., Park, D.K.: Difficulties in analytic computation for relative entropy of entanglement. Phys. Rev. A 81, 052325 (2010)CrossRef ADS
    59.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNet CrossRef ADS MATH
    60.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
    61.Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)CrossRef ADS
    62.Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)CrossRef ADS
    63.Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)CrossRef ADS
    64.Chanda, T., Pal, A.K., Biswas, A., De, A.S., Sen, U.: To Freeze or Not to: Quantum Correlations Under Local Decoherence, arXiv:​1409.​2096 (2014)
    65.Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)CrossRef ADS
    66.You, B., Cen, L.X.: Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 86, 012102 (2012)CrossRef ADS
  • 作者单位:Zhiming Huang (1) (2) (3)
    Daowen Qiu (1) (2)
    Paulo Mateus (4)

    1. Department of Computer Science, Sun Yat-sen University, Guangzhou, 510006, China
    2. The Guangdong Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou, 510006, China
    3. School of Economics and Management, Wuyi University, Jiangmen, 529020, China
    4. SQIG–Instituto de Telecomunicações, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
We investigate the geometry of one-norm geometric quantum discord and present a geometric interpretation of one-norm geometric quantum discord for a class of two-qubit states. It is found that one-norm geometric quantum discord has geometric behavior different from that described in Lang and Caves (Phys Rev Lett 105:150501, 2010), Li et al. (Phys Rev A 83:022321, 2011) and Yao et al. (Phys Lett A 376:358–364, 2012). We also compare the dynamics of the one-norm geometric quantum discord and other measures of quantum correlations under correlated noise. It is shown that different decoherent channels bring different influences to quantum correlations measured by concurrence, entropic quantum discord and geometric quantum discord, which depend on the memory parameter and decoherence parameter. We lay emphasis on the behaviors such as entanglement sudden death and sudden transition of quantum discord. Finally, we study the dynamical behavior of one-norm geometric quantum discord in one-dimensional anisotropic XXZ model by utilizing the quantum renormalization group method. It is shown that the one-norm geometric quantum discord demonstrates quantum phase transition through renormalization group approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700