用户名: 密码: 验证码:
Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II)
详细信息    查看全文
  • 作者:Hanbing Rao ; Wei Liu ; Zhiwei Lu ; Yanying Wang ; Hongwei Ge ; Ping Zou…
  • 关键词:C ; dot@SiO2@Q ; dots hybrid spheres ; Carbodiimide chemistry ; Dual emission ; TEM ; DLS ; Quenching
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:581-588
  • 全文大小:2,251 KB
  • 参考文献:1.Miao X, Ling L, Cheng D, Shuai X (2012) A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst 137(13):3064–3069CrossRef
    2.Yu M, Shi M, Chen Z, Li F, Li X, Gao Y, Xu J, Yang H, Zhou Z, Yi T, Huang C (2008) Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging. Chem Eur J 14(23):6892–6900CrossRef
    3.Zong J, Yang X, Trinchi A, Hardin S, Cole I, Zhu Y, Li C, Muster T, Wei G (2014) Carbon dots as fluorescent probes for “off-on” detection of Cu2+ and L-cysteine in aqueous solution. Biosensor Bioelectron 51:330–335CrossRef
    4.Li F, Wang J, Lai Y, Wu C, Sun S, He Y, Ma H (2013) Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens Bioelectron 39(1):82–87CrossRef
    5.Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Commun (46):4872–4874
    6.Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+ −selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131(5):2008–2012CrossRef
    7.Hao Y, Liu L, Long Y, Wang J, Liu Y-N, Zhou F (2013) Sensitive photoluminescent detection of Cu2+ in real samples using CdS quantum dots in combination with a Cu2+ −reducing reaction. Biosens Bioelectron 41:723–729CrossRef
    8.Li H, Huang X-X, Kong D-M, Shen H-X, Liu Y (2013) Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+ −dependent DNAzyme/substratecomplex. Biosens Bioelectron 42:225–228CrossRef
    9.Su L, Shu T, Wang Z, Cheng J, Xue F, Li C, Zhang X (2013) Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+ −sensor. Biosens Bioelectron 44:16–20CrossRef
    10.Wang Y-Q, Zhao T, He X-W, Li W-Y, Zhang Y-K (2014) A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40–46CrossRef
    11.Zhu A, Qu Q, Shao X, Kong B, Tian Y (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem 124(29):7297–7301CrossRef
    12.Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142(1):272–278CrossRef
    13.Tao G-H, Sturgeon R (1999) Sample nebulization for minimization of transition metal interferences with selenium hydride generation ICP-AES. Spectrochim Acta B At Spectrosc 54(3):481–489CrossRef
    14.Li X-A, Zhou D-M, Xu J-J, Chen H-Y (2007) In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly (dimethylsiloxane) microchip. Talanta 71(3):1130–1135CrossRef
    15.Rahman MA, Won M-S, Shim Y-B (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75(5):1123–1129CrossRef
    16.Zhang S, Wang Q, Tian G, Ge H (2014) A fluorescent turn-off/on method for detection of Cu2+ and oxalate using carbon dots as fluorescent probes in aqueous solution. Mater Lett 115:233–236
    17.Durgadas C, Sharma C, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136(5):933–940CrossRef
    18.Wang H-H, Xue L, Qian Y-Y, Jiang H (2009) Novel ratiometric fluorescent sensor for silver ions. Org Lett 12(2):292–295CrossRef
    19.Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85(13):6461–6468CrossRef
    20.Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427CrossRef
    21.Yang Y, Ji S, Zhou F, Zhao J (2009) Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA. Biosens Bioelectron 24(12):3442–3447CrossRef
    22.Su T, Zhang Z, Luo Q (2012) Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/mKOκ-based biosensor and a single fluorescent protein biosensor. Biosens Bioelectron 31(1):292–298CrossRef
    23.Li P, Fang L, Zhou H, Zhang W, Wang X, Li N, Zhong H, Tang B (2011) A new ratiometric fluorescent probe for detection of Fe2+ with high sensitivity and its intracellular imaging applications. Chem Eur J 17(38):10520–10523CrossRef
    24.Wu H, Mi C, Huang H, Han B, Li J, Xu S (2012) Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application. J Lumin 132(6):1603–1607CrossRef
    25.Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23(48):5801–5806CrossRef
    26.Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128(38):12428–12429CrossRef
    27.Wang J, Chen G, Jiang H, Li Z, Wang X (2013) Advances in nano-scaled biosensors for biomedical applications. Analyst 138(16):4427–4435CrossRef
    28.Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125(14):4045–4049CrossRef
    29.Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2):1239–1245CrossRef
    30.Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24(39):5333–5338CrossRef
    31.Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q (2013) Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 5(23):11665–11671CrossRef
    32.Jing L, Yang C, Qiao R, Niu M, Du M, Wang D, Gao M (2009) Highly fluorescent CdTe@ SiO2 particles prepared via reverse microemulsion method. Chem Mater 22(2):420–427CrossRef
    33.Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362CrossRef
    34.Shi Y, Chen Z, Cheng X, Pan Y, Zhang H, Zhang Z, Li C-W, Yi C (2014) A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn 2+. Biosens Bioelectron 61:397–403CrossRef
    35.Feng C, Shen Z, Li Y, Gu L, Zhang Y, Lu G, Huang X (2009) PNIPAM-b-(PEA-g-PDMAEA) double-hydrophilic graft copolymer: synthesis and its application for preparation of gold nanoparticles in aqueous media. J Polym Sci Part A: Polym Chem 47(7):1811–1824CrossRef
    36.Wang F, Xie Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane functionalized carbon dots. Adv Funct Mater 21(6):1027–1031CrossRef
    37.Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84(14):6220–6224CrossRef
    38.Koneswaran M, Narayanaswamy R (2009) L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B Chem 139(1):104–109CrossRef
    39.Zhang J, Li B, Zhang L, Jiang H (2012) An optical sensor for Cu (II) detection with upconverting luminescent nanoparticles as an excitation source. Chem Commun 48(40):4860–4862CrossRef
    40.Gattás-Asfura K M, Leblanc R M (2003) Peptide-coated CdS quantum dots for the optical detection of copper (II) and silver (I). Chem Commun (21) 2684–2685
  • 作者单位:Hanbing Rao (1)
    Wei Liu (1)
    Zhiwei Lu (1)
    Yanying Wang (1)
    Hongwei Ge (1)
    Ping Zou (1)
    Xianxiang Wang (1)
    Hua He (2)
    Xianying Zeng (3)
    Yongjia Wang (4)

    1. College of Science, Sichuan Agricultural University, Ya’an, 625014, People’s Republic of China
    2. Animal Genetics and Breeding Institute of Sichuan Agricultural University, Sichuan Ya’An, 625014, People’s Republic of China
    3. College of Life Science, Sichuan Agricultural University, Ya’an, 625014, People’s Republic of China
    4. Ya’an City Agricultural Products Quality, Safety Monitoring and Testing Center, Ya’an, 625014, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The surface of CdTe quantum dots (Q-dots) was modified with thioglycolic acid (TGA) and these Q-dots were then covalently conjugated to amino-functionalized silica-coated carbon dots (C-dot@SiO2) via carbodiimide chemistry. The Q-dots form kind of “satellites” on the surface of the C-dot@SiO2 nanoparticles. The nanoparticle conjugates display dual emission (with peaks at 441 nm and 605 nm) under UV excitation and were further characterized by transmission electron microscopy, UV–vis absorption and FTIR spectroscopy. The C-dot@SiO2@Q-dots hybrid spheres are shown to represent a ratiometric fluorescent probe for Cu2+ in that the emission of the Q-dots is quenched by Cu2+, while the emission of the C-dots (which are coated with SiO2) is not quenched. The ratio of the fluorescence intensities at 441 and 655 nm is related to the concentration of Cu2+ in the range from 0.1 to 1.0 μM, with a 0.096 μM lower detection limit. The ratiometric probe was successfully applied to the determination of Cu2+ in (spiked) vegetable and fruit samples by the standard addition method, and recoveries ranged from 96.7 to 100.8 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700