用户名: 密码: 验证码:
Monitoring forest dynamics with multi-scale and time series imagery
详细信息    查看全文
  • 作者:Chunbo Huang ; Zhixiang Zhou ; Di Wang
  • 关键词:Forest dynamics ; Remote sensing ; Multi ; scale ; Time series ; NDVI
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:188
  • 期:5
  • 全文大小:1,864 KB
  • 参考文献:Alongi, D. M. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1(1), 30–39.CrossRef
    Arenas-Castro, S., Fernández-Haeger, J., & Jordano-Barbudo, D. (2014). Evaluation and comparison of QuickBird and ADS40-SH52 multispectral imagery for mapping Iberian wild pear trees (Pyrus bourgaeana, Decne) in a Mediterranean mixed forest. Forests, 5(6), 1304–1330.CrossRef
    Campbell, M. O. N. (2004). Traditional forest protection and woodlots in the coastal savannah of Ghana. Environmental Conservation, 31(03), 225–232.CrossRef
    Chehata, N., Orny, C., Boukir, S., Guyon, D., & Wigneron, J. P. (2014). Object-based change detection in wind storm-damaged forest using high-resolution multispectral images. International Journal of Remote Sensing, 35(13), 4758–4777.CrossRef
    Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., & Jin, S. (2011a). A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 115(4), 1053–1064.CrossRef
    Chen, G., Hay, G. J., Castilla, G., St-Onge, B., & Powers, R. (2011b). A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using QuickBird imagery. International Journal of Geographical Information Science, 25(6), 877–893.CrossRef
    Coppin, Jonckheere, P., Nackaerts, I., Muys, K., & Lambin, B. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596.CrossRef
    Ernst, C., Mayaux, P., Verhegghen, A., Bodart, C., Christophe, M., & Defourny, P. (2013). National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Global Change Biology, 19(4), 1173–1187.CrossRef
    Fuller, D. O., Jessup, T. C., & Salim, A. (2004). Loss of forest cover in Kalimantan, Indonesia, since the 1997–1998 El Niño. Conservation Biology, 18(1), 249–254.CrossRef
    Gao, F., Masek, J., & Wolfe, R. E. (2009). Automated registration and orthorectification package for Landsat and Landsat-like data processing. Journal of Applied Remote Sensing, 3(1), 691–701.CrossRef
    Hansen, M., DeFries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6), 1331–1364.
    Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C. O., & Altstatt, A. (2008). A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112(5), 2495–2513.CrossRef
    Helmer, E. H., & Ruefenacht, B. (2005). Cloud-free satellite image mosaics with regression trees and histogram matching. Photogrammetric Engineering & Remote Sensing, 71(9), 1079–1089.CrossRef
    Houghton, R. A. (2013). Keeping management effects separate from environmental effects in terrestrial carbon accounting. Global Change Biology, 19(9), 2609–2612.CrossRef
    Huang, C., Song, K., Kim, S., Townshend, J. R., Davis, P., Masek, J. G., & Goward, S. N. (2008). Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sensing of Environment, 112(3), 970–985.CrossRef
    Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1), 183–198.CrossRef
    Huemmrich, K. F., & Goward, S. N. (1997). Vegetation canopy PAR absorptance and NDVI: an assessment for ten tree species with the SAIL model. Remote Sensing of Environment, 61(2), 254–269.CrossRef
    Im, J., Jensen, J. R., & Tullis, J. A. (2008). Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 29(2), 399–423.CrossRef
    Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering and Remote Sensing, 72(10), 1179–1188.CrossRef
    Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment, 132(10), 159–175.
    Lamers, P., & Junginger, M. (2013). The ‘debt’is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels, Bioproducts and Biorefining, 7(4), 373–385.CrossRef
    Law, B. E. (2014). Regional analysis of drought and heat impacts on forests: current and future science directions. Global Change Biology, 20(12), 3595–3599.CrossRef
    Leuning, R., Cleugh, H. A., Zegelin, S. J., & Hughes, D. (2005). Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology, 129(3), 151–173.CrossRef
    Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., & Lim, T. K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.CrossRef
    Melaas, E. K., Friedl, M. A., & Zhu, Z. (2013). Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 132(6), 176–185.
    Nielsen, A. A. (2007). The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing, 16(2), 463–478.CrossRef
    Nilson, T., & Kuusk, A. (1989). A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment, 27(2), 157–167.CrossRef
    Quin, G., Pinel-Puyssegur, B., Nicolas, J. M., & Loreaux, P. (2014). MIMOSA: an automatic change detection method for SAR time series. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5349–5363.CrossRef
    Regos, A., D’Amen, M., Herrando, S., Guisan, A., & Brotons, L. (2015). Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). Journal of Ornithology, 156(1), 275–286.
    Soudani, K., François, C., Le Maire, G., Le Dantec, V., & Dufrêne, E. (2006). Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102(1), 161–175.CrossRef
    Stow, D., Hamada, Y., Coulter, L., & Anguelova, Z. (2008). Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sensing of Environment, 112(3), 1051–1061.CrossRef
    Tan, Y. Y., Wang, X., Li, C. H., Cai, Y. P., Yang, Z. F., & Wang, Y. L. (2012). Estimation of ecological flow requirement in Zoige Alpine Wetland of southwest China. Environmental Earth Sciences, 66(5), 1525–1533.CrossRef
    Webster, M., Forest, C., Reilly, J., Babiker, M., Kicklighter, D., Mayer, M., et al. (2003). Uncertainty analysis of climate change and policy response. Climatic Change, 61(3), 295–320.CrossRef
    Xin, Q., Olofsson, P., Zhu, Z., Tan, B., & Woodcock, C. E. (2013). Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sensing of Environment, 135(4), 234–247.
  • 作者单位:Chunbo Huang (1)
    Zhixiang Zhou (1)
    Di Wang (1)
    Yuanyong Dian (1)

    1. College of Horticultural and Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, 430070, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700