用户名: 密码: 验证码:
Effect on properties of PVDF-HFP based composite polymer electrolyte doped with nano-SiO2
详细信息    查看全文
  • 作者:Yan Li (1)
    Xinhai Li (1)
    Huajun Guo (1)
    Zhixing Wang (1)
    Tao Li (1)
  • 关键词:PVDF ; HFP ; Composite polymer electrolyte ; Nano ; SiO2 ; Lithium ion battery
  • 刊名:Iranian Polymer Journal
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:23
  • 期:6
  • 页码:487-494
  • 全文大小:
  • 参考文献:1. Liao YH, Zhou DY, Rao MM, Li WS, Cai ZP, Liang Y, Tan CL (2009) Self-supported poly(methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery. J Power Sources 189:139-44 CrossRef
    2. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251-258 CrossRef
    3. Stephan AM, Saito Y (2002) Ionic conductivity and diffusion coefficient studies of PVdF-HFP polymer electrolytes prepared using phase inversion technique. Solid State Ion 148:475-81 CrossRef
    4. Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162:685-89 CrossRef
    5. Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci 379:80-5 CrossRef
    6. Xiao W, Li X, Wang Z, Guo H, Li Y, Yang B (2012) Performance of PVDF-HFP-based gel polymer electrolytes with different pore forming agents. Iran Polym J 21:755-61 CrossRef
    7. Pu W, He X, Wang L, Jiang C, Wan C (2006) Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272:11-4 CrossRef
    8. Li Y, Xiao W, Li X, Miao C, Guo H, Wang Z (2014) Study on performance of a novel P(VDF-HFP)/SiO2 composite polymer electrolyte using urea as pore-forming agent. Ionics. doi:10.1007/s11581-014-1081-8
    9. Xiao W, Li X, Wang Z, Guo H (2012) Study on performances of ZSM-5 doped P(VDF-HFP) based composite polymer electrolyte prepared by steam bath technique. Iran Polym J 21:481-88 CrossRef
    10. Cao J, Wang L, Shang Y, Fang M, Deng L, Gao J, Li J, Chen H, He Z (2013) Dispersibility of nano-TiO2 on performance of composite polymerelectrolytes for Li-ion batteries. Electrochim Acta 111:674-79 CrossRef
    11. Aravindan V, Vickraman P (2007) Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). J Phys D Appl Phys 40:6754-759 CrossRef
    12. Li Z, Su G, Wang X, Gao D (2005) Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ion 176:1903-908 CrossRef
    13. Cao J, Wang L, Fang M, Shang Y, Deng L, Yang J, Li J, Chen H, He X (2013) Interfacial compatibility of gel polymer electrolyte and electrode onperformance of Li-ion battery. Electrochim Acta 114:527-32 CrossRef
    14. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952-964 CrossRef
    15. He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069-075 CrossRef
    16. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10-6 CrossRef
    17. Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F (2000) A novel route to control refractive index of sol–gel derived nano-porous silica films used as broad band antireflective coating. Mater Sci Eng B78:135-39 CrossRef
    18. Vincent A, Babu S, Brinley E, Karakoti A, Deshpande S, Seal S (2007) Role of catalyst on refractive index tunability of porous silica antireflective coatings by sol–gel technique. J Phys Chem C 111:8291-298 CrossRef
    19. Jayamurgan P, Ponnuswamy V, Ashokan S, Mahalingam T (2013) The effect of dopant on structural, thermal and morphological properties of DBSA-doped polypyrrole. Iran Polym J 22:219-25 CrossRef
    20. Aziz SB (2013) Li+ ion conduction mechanism in poly (e-caprolactone)-based polymer electrolyte. Iran Polym J 22:877-83 CrossRef
  • 作者单位:Yan Li (1)
    Xinhai Li (1)
    Huajun Guo (1)
    Zhixing Wang (1)
    Tao Li (1)

    1. School of Metallurgy and Environment, Central South University, Changsha, 410083, People’s Republic of China
  • ISSN:1735-5265
文摘
Various kinds of nano-SiO2 using different catalysts were obtained and characterized by scanning electron microscope (SEM) technique. The results showed that the nano-SiO2 using NH3·H2O as catalyst presented the best morphology. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 were prepared by phase inversion method. The as-prepared CPE membranes were immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5?h to be activated. The physicochemical and electrochemical properties of the CPEs were characterized by SEM, X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques. The results indicate that the CPEs doped with 10?% nano-SiO2 exhibit the best performance. SEM micrographs showed that the CPE membranes have uniform surface with abundant interconnected micro-pores, and the uptake ratio was up to 104.4?wt%. EIS and LSV analysis also showed that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.372?mS?cm? and 4.7?V, respectively. The interfacial resistance R i was 670?Ω?cm? in the first day, then increased to a stable value of about 850?Ω?cm? in 10?days storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also showed good charge–discharge performance, which suggested that the prepared CPE membranes can be used as potential electrolytes for lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700