用户名: 密码: 验证码:
Collaborative representation with reduced residual for face recognition
详细信息    查看全文
  • 作者:Chang Yang (1)
    Chengyin Liu (2)
    Ning Wu (2)
    Xiang Wu (3)
    Yidong Li (4)
    Zhiying Wang (2)
  • 关键词:Computer vision ; Face recognition ; Pattern recognition ; Sparse representation ; Transform methods
  • 刊名:Neural Computing & Applications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:25
  • 期:7-8
  • 页码:1741-1754
  • 全文大小:1,238 KB
  • 参考文献:1. Kirby M, Sirovich L (1990) Application of the KL phase for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103-08 CrossRef
    2. Xu Y, Zhang D, Yang J, Yang J-Y (2008) An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71(10-2):1857-865 CrossRef
    3. Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131-37 CrossRef
    4. Xu Y, Zhang D (2010) Represent and fuse bimodal biometric images at the feature level: Complex-matrix-based fusion scheme. Opt Eng 49(3):037002
    5. Park SW, Savvides M (2010) A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination. EURASIP J Adv Signal Process 2010:11 CrossRef
    6. Dikmen M, Huang T (2008) Robust estimation of foreground in surveillance videos by sparse error estimation. In: International conference pattern recognition
    7. Lai Z, Jin Z, Yang J (2011) Sparse two dimensional local discriminant projections for feature extraction. Neurocomputing 74(4):629-37 CrossRef
    8. Lai Z, Jin Z, Yang J, Wong WK (2010) Sparse local discriminant projections for feature extraction. In: ICPR
    9. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010). Sparse representation for computer vision and pattern recognition. In: IEEE transactions on neural networks
    10. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210-27 CrossRef
    11. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Supervised dictionary learning. In: Advances in NIPS
    12. Shi Y, Dai DQ, Liu CC, Yan H (2009) Sparse discriminant analysis for breast cancer biomarker identification and classification. Prog Nat Sci 19(11):1635-641 CrossRef
    13. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: IEEE international conference on computer vision and pattern recognition
    14. Rao S, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In: IEEE international conference on computer vision and pattern recognition
    15. Lai Z, Xu Y, Yang J, Zhang D (2013) Sparse tensor discriminant analysis. IEEE Trans Image Process 22(10):3904-915 CrossRef
    16. Li J-B, Chu S-C, Pan J-S, Jain LC (2012) Multiple viewpoints based overview for face recognition. J Inf Hiding Multimed Signal Process 3(4):352-69
    17. Feng Q, Huang C-T, Yan L (2013) Resprentation-based nearest feature plane for pattern recognition. J Inf Hiding Multimed Signal Process 4(3):178-91
    18. Xu Y, Zhu Q, Chen Y, Pan J-S (2012) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 8(12):543-54
    19. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: ICCV
    20. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Cir Syst Video Technol 21(9):1255-262 CrossRef
    21. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
    22. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090-104 CrossRef
    23. Phillips PJ. The facial recognition technology (FERET) database Wu (2)
    Xiang Wu (3)
    Yidong Li (4)
    Zhiying Wang (2)

    1. College of Economics, Shenzhen University, Shenzhen, 518060, China
    2. Harbin Institute of Technology Shenzhen Graduate School, University Town, Shenzhen, 518055, China
    3. Harbin Institute of Technology, Dazhi Street, Nangang District, Harbin, 150001, China
    4. School of Computer and Information Technology, Beijing Jiaotong University, 3 Shangyuan Village, Beijing, 100044, China
  • ISSN:1433-3058
文摘
Collaboration representation-based classification (CRC) was proposed as an alternative approach to the sparse representation method with similar efficiency. The CRC is essentially a competition scheme for the training samples to compete with each other in representing the test sample, and the training class with the minimum representation residual from the test sample wins the competition in the classification. However, the representation error is usually calculated based on the Euclidean distance between a test sample and the weighted sum of all the same-class samples. This paper exploits alternative methods of calculating the representation error in the CRC methods to reduce the representation residual in a more optimal way, so that the sample classes compete with each other in a closer range to represent the test sample. A large number of face recognition experiments on three face image databases show that the CRC methods with optimized presentation residual achieve better performance than the original CRC, and the maximum improvement in classification accuracy is up to 12?%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700