用户名: 密码: 验证码:
Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber
详细信息    查看全文
  • 作者:Yi Li ; Lin Sang ; Zhiyong Wei ; Chen Ding
  • 关键词:Poly(butylene succinate) ; Basalt fiber ; Morphology ; Mechanical properties ; Thermal properties
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:122
  • 期:1
  • 页码:261-270
  • 全文大小:2,043 KB
  • 参考文献:1.Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q. Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Adv. 2013;3:26418鈥?6.CrossRef
    2.Zhou M, Li Y, He C, Jin T, Wang K, Fu Q. Interfacial crystallization enhanced interfacial interaction of poly(butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol. 2014;91:22鈥?.CrossRef
    3.Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B. 2011;42:856鈥?3.CrossRef
    4.Liang Z, Pan P, Zhu B, Dong T, Inoue Y. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci. 2010;115:3559鈥?7.CrossRef
    5.Dorez G, Taguet A, Ferry L, Lopez-Cuesta JM. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab. 2013;98:87鈥?5.CrossRef
    6.Feng YH, Li YJ, Xu BP, Zhang DW, Qu JP, He HZ. Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Compos Part B. 2013;44:193鈥?.CrossRef
    7.Wu CS, Liao HT, Jhang JJ. Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterization and assessment of mechanical and thermal properties. Polym Bull. 2013;70:3443鈥?2.CrossRef
    8.Feng Y, Shen H, Qu J, Liu B, He H, Han L. Preparation and properties of PBS/sisal-fiber composites. Polym Eng Sci. 2011;51:474鈥?1.CrossRef
    9.Lee MW, Han SO, Seo YB. Red algae fibre/poly(butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Technol. 2008;68:1266鈥?2.CrossRef
    10.Nam TH, Ogihara S, Nakatani H, Kobayashi S, Song JI. Mechanical and thermal properties and water absorption of jute fiber reinforced poly(butylene succinate) biodegradable composites. Adv Compos Mater. 2012;21:241鈥?8.CrossRef
    11.Liu L, Yu J, Cheng L, Yang X. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab. 2009;94:90鈥?.CrossRef
    12.Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers. 2013;5:128鈥?1.CrossRef
    13.Tan B, Qu J, Liu L, Feng Y, Hu S, Yin X. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta. 2011;525:141鈥?.CrossRef
    14.Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000鈥?010. Prog Polym Sci. 2012;37:1552鈥?6.CrossRef
    15.Faruk O, Bledzki AK, Fink HP, Sain M. Progress report on natural fiber reinforced composites. Macromol Mater Eng. 2014;299:9鈥?6.CrossRef
    16.Artemeko SE. Polymer composite materials made from carbon, basalt, and glass fibres. Structure and properties. Fibre Chem. 2003;35:226鈥?.CrossRef
    17.Kadykova YuA, Artemeko SE, Valileva OV, Leontev AN. Physicochemical reaction in polymer composite materials made from carbon, glass, and basalt fibres. Fibre Chem. 2003;35:455鈥?.CrossRef
    18.De谩k T, Czig谩ny T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J. 2009;79:645鈥?1.CrossRef
    19.De谩k T, Czig谩ny T, Tam谩s P, N茅meth C. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polym Lett. 2010;4:590鈥?.CrossRef
    20.De谩k T, Czig谩ny T, Mars谩lkov谩 M, Militky J. Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polym Eng Sci. 2010;50:2448鈥?6.CrossRef
    21.Yu A, Kadykova A. Structural polymeric composite material reinforced with basalt fiber. Russ J Appl Chem. 2012;85:1434鈥?.CrossRef
    22.Varley RJ, Tian W, Leong KH, Leong AY, Fredo F, Quaresimin M. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites. Polym Compos. 2013;34:320鈥?.CrossRef
    23.Espan JM, Samper MD, Fages E, Sanchez-Nacher L, Balart R. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polym Compos. 2013;34:376鈥?1.CrossRef
    24.Torres JP, Hoto R, Andr茅s J, Garc铆a-Manrique JA. Manufacture of green-composite sandwich structures with basalt fiber and bioepoxy resin. Adv Mater Sci Eng. 2013;Article ID 214506.
    25.Manikandan V, Jappes JTW, Kumar SMS, Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos Part B. 2012;43:812鈥?.CrossRef
    26.Botev M, Betchev H, Bikiaris D, Panayiotou C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl Polym Sci. 1999;74:523鈥?1.CrossRef
    27.Czig谩ny T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66:3210鈥?0.CrossRef
    28.Czig谩ny T, De谩k E脕KT, Tam谩s P. Discontinuous basalt and glass fiber reinforced PP composites from textile prefabricates: effects of interfacial modification on the mechanical performance. Compos Interfaces. 2008;15:697鈥?07.CrossRef
    29.Cao S, Liu H, Ge S, Wu G. Mechanical and tribological behaviors of UHMWPE composites filled with basalt fibers. J Reinf Plast Compos. 2011;30:347鈥?5.CrossRef
    30.Mokhtar I, Yahya MY, Kadir MRA. Mechanical characterization of basalt/HDPE composite under in vitro condition. Polym-Plast Technol Eng. 2013;52:1007鈥?5.CrossRef
    31.Wu Q, Chi K, Wu Y, Lee S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater Des. 2014;60:334鈥?2.CrossRef
    32.Ying S, Zhou X. Basalt fibres/polystyrene interfacial adhesion through modification of basalt fibres by block copolymers. Iran Polym J. 2011;20:571鈥?.
    33.Ronkay F, Czig谩ny T. Development of composites with recycled PET matrix. Polym Adv Technol. 2006;17:830鈥?.CrossRef
    34.Kr谩膷al铆k M, Posp铆拧il L, 艩louf M, Mike拧ov谩 J, Sikora A, 艩imon铆k J, Forteln媒 I. Recycled poly(ethylene terephthalate) reinforced with basalt fibres: rheology, structure, and utility properties. Polym Compos. 2008;29:437鈥?2.CrossRef
    35.Chen X, Li Y, Gu N. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed Mater. 2010;5:044104鈥?.CrossRef
    36.Liu T, Yu F, Yu X, Zhao X, Lu A, Wang J. Basalt fiber reinforced and elastomer toughened polylactide composites: mechanical properties, rheology, crystallization, and morphology. J Appl Polym Sci. 2012;125:1292鈥?01.CrossRef
    37.Liu T, Yu X, Yu F, Zhao X, Lu A, Wang J, Wang X, Liu T. Isothermal crystallization kinetics of fiber/polylactic acid composites and morphology. Polym-Plast Technol Eng. 2012;51:597鈥?04.CrossRef
    38.Kurniawan D, Kim BS, Lee HY, Lim JY. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos Part B. 2012;43:1010鈥?.CrossRef
    39.Kurniawan D, Kim BS, Lee HY, Lim JY. Effect of silane treatment on mechanical properties of basalt fiber/polylactic acid ecofriendly composites. Polym-Plast Technol Eng. 2013;52:97鈥?00.CrossRef
    40.T谩bi T, Tam谩s P, Kov谩cs JG. Chopped basalt fibres: a new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources. Express Polym Lett. 2013;7:107鈥?9.CrossRef
    41.Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B. 2005;36:504鈥?2.CrossRef
    42.Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of basalt fiber composite mechanical properties for applications in transportation. Polym Compos. 2006;27:41鈥?.CrossRef
    43.Liu Q, Shaw MT, Parnas RS, McDonnell AM. Investigation of basalt fiber composite aging behavior for applications in transportation. Polym Compos. 2006;27:475鈥?3.CrossRef
    44.Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J, Zhang R, Wang H. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater Chem Phys. 2012;133:845鈥?.CrossRef
    45.Liang J, Xu Y, Wei Z, Song P, Chen G, Zhang W. Mechanical properties, crystallization and melting behaviors of carbon fiber reinforced PA6 composites. J Therm Anal Calorim. 2014;115:209鈥?8.CrossRef
    46.Miyata T, Masuko T. Crystallization behaviour of poly(tetramethylene succinate). Polymer. 1998;39:1399鈥?04.CrossRef
    47.Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081鈥?2.CrossRef
    48.Han H, Wang X, Wu D. Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber. J Chem Technol Biotechnol. 2013;88:1200鈥?1.CrossRef
    49.Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W. Morphology, mechanical and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos. 2014;. doi:10.鈥?002/鈥媝c.鈥?3038 .
    50.Wang X, Yang H, Song L, Hu Y, Xing W, Lu H. Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol. 2011;72:1鈥?.CrossRef
    51.Cao YW, Feng JC, Wu PY. Preparation of organically dispersible grapheme nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon. 2010;48:3834鈥?.CrossRef
    52.Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC. Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ. 2007;15:151鈥?.CrossRef
    53.Shih YF. Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci, Part B Polym Phys. 2009;47:1231鈥?.CrossRef
    54.Wei Z, Chen G, Shi Y, Song P, Zhan M, Zhang W. Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. J Polym Res. 2012;19: Article No. 9930.
    55.Wang Y, Tong B, Hou S, Li M, Shen C. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A. 2011;42:66鈥?4.CrossRef
  • 作者单位:Yi Li (1)
    Lin Sang (2)
    Zhiyong Wei (3)
    Chen Ding (2)
    Ying Chang (2)
    Guangyi Chen (2)
    Wanxi Zhang (2)
    Jicai Liang (1) (2)

    1. Key Laboratory of Automotive Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
    2. State Key Laboratory of Structural Analysis for Industrial Equipment and School of Automotive Engineering, Dalian University of Technology, Dalian, 116024, China
    3. Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Biodegradable poly(butylene succinate) (PBS)/basalt fiber (BF) composites were prepared by melt blending method using twin-screw extruder followed by injection molding. Mechanical properties, crystallization and melting behavior, morphology, crystal structure and thermal stability of PBS/BF composites with various BF contents were investigated by different techniques. The tensile and impact properties of the composites were improved markedly with the addition of BF, due to the efficient interfacial adhesion between fibers and PBS matrix. Crystallization and melting behavior of PBS in its composites kept almost unchanged, indicating that the nucleation effect of BF was minimal and, meanwhile, it played a role in hindrance of chain motion. TG analysis showed that the thermal stability of PBS/BF composites was enhanced by the addition of BF. The crystal structure of PBS was not affected by the incorporation of BF, while the nucleation density increased gradually and the spherulite size reduced remarkably with the increase in BF. No transcrystallization phenomenon on the surface of BF was observed maybe as a result of without surface treatment. Keywords Poly(butylene succinate) Basalt fiber Morphology Mechanical properties Thermal properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700