用户名: 密码: 验证码:
Coil to globule transition of homo- and block-copolymer with different topological constraint and chain stiffness
详细信息    查看全文
  • 作者:Wei Wang ; Yanchun Li ; Zhongyuan Lu
  • 关键词:coil ; to ; globule transition ; topological constraint ; chain stiffness ; molecular dynamics
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:58
  • 期:9
  • 页码:1471-1477
  • 全文大小:1,563 KB
  • 参考文献:1.Dulbecco R, Vogt M. Evidence for a ring structure of polyoma virus DNA. Proc Natl Acad Sci USA, 1963, 50: 236鈥?43CrossRef
    2.Vinogard J, Lebowitz J. Physical and topological properties of circular DNA. J Gen Physiol, 1966, 49: 103鈥?25CrossRef
    3.Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol, 1999, 294: 1327鈥?336CrossRef
    4.Craik DJ, Conibear AC. The chemistry of cyclotides. J Org Chem, 2011, 76: 4805鈥?817CrossRef
    5.Mallam AL, Jackson SE. Folding studies on a knotted protein. J Mol Biol, 2005, 346: 1409鈥?421CrossRef
    6.Hsieh T. Knotting of the circular duplex DNA by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem, 1983, 258: 8413鈥?420
    7.Trigueros S, Roca J. Production of highly knotted DNA by means of cosmid circularization inside phage capsids. BMC Biotechnol, 2007, 7: 94CrossRef
    8.Oike H. Supramolecular approach for synthesis and functionalization of cyclic macromolecules. React Funct Polym, 2007, 67: 1157鈥?167CrossRef
    9.Jia Z, Monteiro MJ. Cyclic polymers: methods and strategies. J Polym Sci A: Polym Chem, 2012, 50: 2085鈥?097CrossRef
    10.Xiong XQ, Yi C. Application of click chemistry in the synthesis of cyclic polymers. Sci China Chem, 2013, 43: 783鈥?00
    11.Ohta Y, Kushida Y, Matsushita Y, Takano A. SEC-MALS characterization of cyclization reaction products: formation of knotted ring polymer. Polymer, 2009, 50: 1297鈥?299CrossRef
    12.Ohta Y, Nakamura M, Matsushita Y, Takano A. Synthesis, separation and characterization of knotted ring polymers. Polymer, 2012, 53: 466鈥?70CrossRef
    13.Cates ME, Deutsch JM. Conjectures on the statistics of ring polymers. J Phys France, 1986, 47: 2121鈥?128CrossRef
    14.Baiesi M, Orlandini E. Universal properties of knotted polymer rings. Phys Rev E, 2012, 86: 031805CrossRef
    15.Rosa A, Orlandini E, Tubiana L, Micheletti C. Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology. Macromolecules, 2011, 44: 8668鈥?680CrossRef
    16.Rawdon EJ, Kern JC, Piatek M, Plunkett P, Stasiak A, Millett KC. Effect of knotting on the shape of polymers. Macromolecules, 2008, 41: 8281鈥?287CrossRef
    17.Millett KC, Plunkett P, Piatek M, Rawdon EJ, Stasiak A. Effect of knotting on polymer shapes and their enveloping ellipsoids. J Chem Phys, 2009, 130: 165104CrossRef
    18.Rawdon E, Dobay A, Kern JC, Millett KC, Piatek M, Plunkett P, Stasiak A. Scaling behavior and equilibrium lengths of knotted polymers. Macromolecules, 2008, 41: 4444鈥?451CrossRef
    19.Kanaeda N, Deguchi T. Universality in the diffusion of knots. Phy Rev E, 2009, 79: 021806CrossRef
    20.Orlandini E, Stella AL, Vanderzande C, Zonta F. Slow topological time scale of knotted polymers. J Phys A Math Theor, 2008, 41: 122002CrossRef
    21.Narros A, Moreno AJ, Likos CN. Effects of knots on ring polymers in solvents of varying quality. Macromolecules, 2013, 46: 3654鈥?668CrossRef
    22.Chen WD, Chen JZ, Liu LJ, Xu XL, An LJ. Simulation study on conformational and dynamical properties of individual ring polymers in good solution. Sci China Chem, 2014, 44: 320鈥?26CrossRef
    23.Ivanov VA, Paul W, Binder K. Finite chain length effects on the coil-globule transition of stiff-chain macromolecules: a Monte Carlo simulation. J Chem Phys, 1998, 109: 5659CrossRef
    24.Ivanov VA, Stukan MR, Vasilevskaya VV, Paul W, Binder K. Structures of stiff macromolecules of finite chain length near the coil-globule transition: a Monte Carlo simulation. Macromol Theor Simul, 2000, 9: 488鈥?99CrossRef
    25.Bachmann M, Janke W. Thermodynamics of lattice heteropolymers. J Chem Phys, 2004, 120: 6779鈥?791CrossRef
    26.Bachmann M, Ark谋n H, Janke W. Multicanonical study of coarse-grained off-lattice models for folding heteropolymers. Phys Rev E, 2005, 71: 031906CrossRef
    27.Wang L, Chen T, Lin X, Liu Y, Liang H. Canonical and microcanonical analysis of nongrafted homopolymer adsorption by an attractive substrate. J Chem Phys, 2009, 131: 244902CrossRef
    28.Chen T, Wang L, Lin X, Liu Y, Liang H. Microcanonical analysis of adsorption of homopolymer chain on a surface. J Chem Phys, 2009, 130: 244905CrossRef
    29.Wang Z, He X. Phase transition of a single star polymer: a Wang-Landau sampling study. J Chem Phys, 2011, 135: 094902CrossRef
    30.Guo J, Liang H, Wang ZG. Coil-to-globule transition by dissipative particle dynamics simulation. J Chem Phys, 2011, 134: 244904CrossRef
    31.Seaton DT, Schnabel S, Landau DP, Bachmann M. From flexible to stiff: systematic analysis of structural phases for single semiflexible polymers. Phys Rev Lett, 2013, 110: 028103CrossRef
    32.Arkin H, Janke W. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J Chem Phys, 2013, 138: 054904CrossRef
    33.Wang Z, Wang L, He X. Phase transition of a single protein-like copolymer chain. Soft Matter, 2013, 9: 3106CrossRef
    34.Chi P, Wang Z, Yin Y, Li BH, Shi AC. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phy Rev E, 2013, 87: 042608CrossRef
    35.Wang W, Zhao P, Yang X, Lu ZY. Coil-to-globule transitions of homopolymers and multiblock copolymers. J Chem Phys, 2014, 141: 244907CrossRef
    36.Swetnam A, Brett C, Allen MP. Phase diagrams of knotted and unknotted ring polymers. Phys Rev E, 2012, 85: 031804CrossRef
    37.Zhao Y, Ferrari F. A numerical technique for studying topological effects on the thermal properties of knotted polymer rings. J Stat Mech-Theory E, 2012: P11022
    38.Zhao Y, Ferrari F. A study of polymer knots using a simple knot invariant consisting of multiple contour integrals. J Stat Mech-Theory E, 2013: P10010
    39.Yang L, Gao YQ. A selective integrated tempering method. J Chem Phys, 2009, 131: 214109CrossRef
    40.Yang L, Shao Q, Gao YQ. Comparison between integrated and parallel tempering methods in enhanced sampling simulations. J Chem Phys, 2009, 130: 124111CrossRef
    41.Zhao P, Yang LJ, Gao YQ, Lu ZY. Facile implementation of integrated tempering sampling method to enhance the sampling over a broad range of temperatures. Chem Phys, 2013, 415: 98鈥?05CrossRef
    42.Zhu YL, Liu H, Li ZW, Qian HJ, Milano G, Lu ZY. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J Comput Chem, 2013, 34: 2197鈥?211CrossRef
    43.Roovers J, Toporowski PM. Synthesis of high molecular weight ring polystyrenes. Macromolecules, 1983, 16: 843鈥?49CrossRef
    44.Roovers J. Dilute-solution properties of ring polystyrenes. J Polym Sci Polym Phys Ed, 1985, 23: 1117鈥?126CrossRef
    45.Takano A, Kushida Y, Ohta Y, Masuoka K, Matsushita Y. The second virial coefficients of highly-purified ring polystyrenes in cyclohexane. Polymer, 2009, 50: 1300鈥?303CrossRef
    46.des Cloizeaux J. Ring polymers in solution: topological effects. J Phys Lett, 1981, 42: L鈥?33
    47.Tanaka F. Osmotic pressure of ring-polymer solutions. J Chem Phys, 1987, 87: 4201CrossRef
    48.Iwata K. temperature of ring polymers: another evidence of topological interaction. Macromolecules, 1989, 22: 3702鈥?706CrossRef
  • 作者单位:Wei Wang (1)
    Yanchun Li (1)
    Zhongyuan Lu (1)

    1. State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
In this paper, we present the coil-to-globule (CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The sampling method was a novel enhanced method that efficiently sampled the energy space with low computational costs. The method proved to be efficient and precise to study the structural transitions of polymer chains with complex topological constraint, which may not be easily done by using conventional Monte Carlo method. The topological constraint affects the globule shape of the polymer chain, thus further influencing the CG transition. We found that increasing the topological constraint generally decreased CG transition temperature for homopolymers. For semiflexible chains, an additional first-order like symmetry-broken transition emerged. For block copolymers, the topological constraint did not obviously change the transition temperature, but greatly reduced the energy signal of the CG transition. Keywords coil-to-globule transition topological constraint chain stiffness molecular dynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700