用户名: 密码: 验证码:
Preparation and electrochemical performances of submicro-TiP2O7 cathode for lithium ion batteries
详细信息    查看全文
  • 作者:Yuwan Hao (1)
    Chao Wu (1) (2)
    Yongli Cui (1)
    Kun Xu (1)
    Zheng Yuan (1)
    Quanchao Zhuang (1)
  • 关键词:TiP2O7 ; Electrochemical performance ; EIS ; Cathode ; Lithium ion batteries
  • 刊名:Ionics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:20
  • 期:8
  • 页码:1079-1085
  • 全文大小:926 KB
  • 参考文献:1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188-194 CrossRef
    2. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1-0 CrossRef
    3. Takahashi M, Tobishima SI, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283-89 CrossRef
    4. Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of Li / x CoO2, Li / x NiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69:265-70 CrossRef
    5. Yamada A, Kudo Y, Liu KY (2001) Phase diagram of Li / x (Mn / y Fe / 1- / y )PO4 (0?em class="a-plus-plus">x, / y?). J Electrochem Soc 148:A1153–A1158 CrossRef
    6. Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97-98:430-32 CrossRef
    7. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137 CrossRef
    8. Okada S, Sawa SI, Uebou Y, Egashira M, Yamaki JI, Tabuchi M, Kobayashi H, Fukumi K, Kageyama H (2003) Charge–discharge mechanism of LiCoPO4 cathode for rechargeable lithium batteries. Electrochemistry 71:1136-138
    9. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8?V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178-79 CrossRef
    10. Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion cell cathodes. Ionics 8:17-6 CrossRef
    11. Fong R, Sacken UV, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009-013 CrossRef
    12. Shu ZX, Mcmilan RS, Murray JJ (1993) Electrochemical intercalation of lithium into graphite. J Electrochem Soc 140:922-27 CrossRef
    13. Yeo JS, Park TH, Seo MH, Miyawaki J, Mochida I, Yoon SH (2012) Solid electrolyte interphase for formation behavior on well-defined carbon surface for Li-ion battery systems. Electrochim Acta 77:111-20 CrossRef
    14. Norberg ST, Svensson G, Albertsson J (2001) A TiP2O7 superstructure. Acta Crystallogr Sect C: Cryst Struct Commun C57:225-27 CrossRef
    15. Alberti G, Costantino U (1984) Recent progress in the intercalation chemistry of layered α-ziconium phosphale and its derivatives, and future perspectives for their use in catalysis. J Mol Catal 27:235-50 CrossRef
    16. Patoux S, Masquelier C (2002) Lithium insertion into titanium phosphates, silicates, and sulfates. Chem Mater 14:5057-068 CrossRef
    17. Shi ZC, Wang Q, Ye W, Li Y, Yang Y (2006) Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials. Microporous Mesoporous Mater 88:232-37 CrossRef
    18. Kishore MS, Pralong V, Caignaert V, Varadaraju UV, Raveau B (2007) Electrochemical intercalation of lithium in the titanium hydrogeno phosphate Ti(HPO4)2·H2O. J Power Sources 169:355-60 CrossRef
    19. Uebou Y, Okada S, Egashira M, Yamaki JI (2002) Cathode properties of pyrophosphates for rechargeable lithium batteries. Solid State Ionics 148:323-28 CrossRef
    20. Wang HB, Huang KL, Zeng YQ, Yang S, Chen LQ (2007) Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anodes for lithium ion battery with aqueous solution electrolyte. Electrochim Acta 52:3280-285 CrossRef
    21. Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR (2011) Combustion synthesis of TiP2O7 nanoparticles as electrode for hybrid supercapacitor. J Power Sources 196:8850-854 CrossRef
    22. Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S (1997) Structural disorder in the cubic 3×3×3 superstructure of TiP2O7 XRD and NMR study. Chem Mater 9:996-003 CrossRef
    23. Wachtler M, Besenhard JO, Winter M (2001) Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sources 94:189-93 CrossRef
    24. Rai AK, Lim J, Mathew V, Gim J, Kang J, Paul BJ, Kim D, Ahn S, Kim S, Ahn K, Kim J (2012) Highly reversible capacity nanocomposite anode for secondary lithium-ion batteries. Electrochem Commun 19:9-2 CrossRef
    25. Barsoukov E, Kim DH, Lee HS (2003) Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics 161:19-9 CrossRef
    26. Levi MD, Aurbach D (1997) Simultaneous measurements and modeling of the electrochemical impedance and the cyclic slow scan rate cyclic voltammetric studies and modeling. J Phys Chem B 101:4630-640 CrossRef
    27. Cui YL, Hao YW, Bao WJ, Shi YL, Zhuang QC, Qiang YH (2013) Synthesis and electrochemical behavior of LiTi2(PO4)3 as anode materials for aqueous rechargeable lithium batteries. J Electrochem Soc 160:A1–A7 CrossRef
    28. Yuan Z, Cui YL, Shen MF, Qiang YH, Zhuang QC (2012) Preparation and electrochemical performance of LiTi22(PO4)3/C composite cathode for lithium ion batteries. Acta Chim Sin 28:1169-176
    29. Levi MD, Gamosky K, Aurbach D (2000) On electrochemical impedance measurements of Li / x Co0.2Ni0.8O2 and Li / x NiO2 intercalation electrodes. Electrochim Acta 45:1781-789 CrossRef
  • 作者单位:Yuwan Hao (1)
    Chao Wu (1) (2)
    Yongli Cui (1)
    Kun Xu (1)
    Zheng Yuan (1)
    Quanchao Zhuang (1)

    1. Li-ion Batteries Lab, School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, China
    2. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
  • ISSN:1862-0760
文摘
The TiP2O7 with a cubic 3?×-?×- superstructure was synthesized by a liquid-assisted solid-state reaction, and characterized by x-ray diffraction, scanning electron microscopy, cyclic voltammogram, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS) technique. The results showed that there was only one step of intercalation into TiP2O7, corresponding to a pair redox (E Li/Li +--.74/2.48?V). The initial discharge capacity of TiP2O7 was 110?mAh/g at a current density of 15?mA/g, and the capacity retention was 76.12?% of the initial discharge capacity after 100?cycles. The EIS of TiP2O7 electrode consisted of two semicircles in organic electrolyte, which was attributed to SEI resistance as well as the contact resistance, and charge transfer process, respectively. A suitable model was proposed to explain the impedance response of the insertion TiP2O7 material of lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700