用户名: 密码: 验证码:
FOXP3+ Tregs: heterogeneous phenotypes and conflicting impacts on survival outcomes in patients with colorectal cancer
详细信息    查看全文
  • 作者:Changhua Zhuo (1) (2) (3)
    Ye Xu (1) (2)
    Mingang Ying (3)
    Qingguo Li (1) (2)
    Liyong Huang (1) (2)
    Dawei Li (1) (2)
    Sanjun Cai (1) (2)
    Bin Li (4)

    1. Department of Colorectal Surgery
    ; Fudan University Shanghai Cancer Center ; No. 270 Dong-an Road ; Shanghai ; 20032 ; People鈥檚 Republic of China
    2. Department of Oncology
    ; Shanghai Medical College ; Fudan University ; No. 270 Dong-an Road ; Shanghai ; 20032 ; People鈥檚 Republic of China
    3. Department of Surgical Oncology
    ; Fujian Provincial Cancer Hospital ; Teaching Hospital of Fujian Medical University ; No. 420 Fu-ma Road ; Fuzhou ; 350014 ; People鈥檚 Republic of China
    4. Key Laboratory of Molecular Virology and Immunology
    ; Unit of Molecular Immunology ; Institut Pasteur of Shanghai ; Shanghai Institutes for Biological Sciences ; Chinese Academy of Sciences ; No. 320 Yue-yang Road ; Shanghai ; 20031 ; People鈥檚 Republic of China
  • 关键词:Regulatory T cells (Tregs) ; Colorectal cancer (CRC) ; Transcription factor forkhead box P3 (FOXP3) ; Treg ; specific demethylated region (TSDR) ; Epigenetic phenotype ; Survival outcome
  • 刊名:Immunologic Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:61
  • 期:3
  • 页码:338-347
  • 全文大小:296 KB
  • 参考文献:1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9鈥?9. doi:10.3322/caac.21208 . CrossRef
    2. O鈥機onnell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004;96(19):1420鈥?. doi:10.1093/jnci/djh275 . CrossRef
    3. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471鈥?. doi:10.1245/s10434-010-0985-4 . CrossRef
    4. Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009;69(2):599鈥?08. doi:10.1158/0008-5472.can-08-2361 . CrossRef
    5. Sellitto A, Galizia G, De Fanis U, Lieto E, Zamboli A, Orditura M, et al. Behavior of circulating CD4+CD25+Foxp3+ regulatory T cells in colon cancer patients undergoing surgery. J Clin Immunol. 2011;31(6):1095鈥?04. doi:10.1007/s10875-011-9585-8 . CrossRef
    6. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22(3):329鈥?1. doi:10.1016/j.immuni.2005.01.016 . CrossRef
    7. Shevach EM. Mechanisms of FoxP3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636鈥?5. doi:10.1016/j.immuni.2009.04.010 . CrossRef
    8. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11(1):7鈥?3. doi:10.1038/ni.1818 . CrossRef
    9. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25鈭?T cells. J Clin Investig. 2003;112(9):1437鈥?3. doi:10.1172/jci19441 . CrossRef
    10. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263鈥?4. doi:10.1038/nrc1586 . CrossRef
    11. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345鈥?2. doi:10.1038/ni1178 . CrossRef
    12. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295鈥?07. doi:10.1038/nri1806 . CrossRef
    13. Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjornbeth BA, et al. Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. CII. 2008;57(6):813鈥?1. doi:10.1007/s00262-007-0417-x .
    14. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186鈥?2. doi:10.1200/jco.2008.18.7229 . CrossRef
    15. Jensen HK, Donskov F, Nordsmark M, Marcussen N, von der Maase H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res. 2009;15(3):1052鈥?. doi:10.1158/1078-0432.ccr-08-1296 . CrossRef
    16. Zhuo C, Li Z, Xu Y, Wang Y, Li Q, Peng J, et al. Higher FOXP3-TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival. Mol Cancer. 2014;13(1):153. doi:10.1186/1476-4598-13-153 . CrossRef
    17. Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T, et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer. 2008;99(11):1867鈥?3. doi:10.1038/sj.bjc.6604756 . CrossRef
    18. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, et al. Regulatory (FoxP3聽+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother. 2010;33(4):435鈥?1. doi:10.1097/CJI.0b013e3181d32f01 . CrossRef
    19. Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer. 2010;126(11):2635鈥?3. doi:10.1002/ijc.24989 .
    20. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350鈥?6. doi:10.1002/path.2774 . CrossRef
    21. Lee WS, Park S, Lee WY, Yun SH, Chun HK. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer. 2010;116(22):5188鈥?9. doi:10.1002/cncr.25293 . CrossRef
    22. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263鈥?1. doi:10.1158/0008-5472.can-10-2907 . CrossRef
    23. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3聽+)/regulatory (FoxP3聽+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137(4):1270鈥?. doi:10.1053/j.gastro.2009.06.053 . CrossRef
    24. Suzuki H, Chikazawa N, Tasaka T, Wada J, Yamasaki A, Kitaura Y, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. CII. 2010;59(5):653鈥?1. doi:10.1007/s00262-009-0781-9 .
    25. Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18(5):723鈥?7.
    26. Fujimoto S, Greene M, Sehon AH. Immunosuppressor T cells in tumor bearing host. Immunol Commun. 1975;4(3):201鈥?7.
    27. North RJ, Bursuker I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2鈭?suppressor T cells down-regulate the generation of Ly-1鈭?+ effector T cells. J Exp Med. 1984;159(5):1295鈥?11. CrossRef
    28. Berendt MJ, North RJ. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med. 1980;151(1):69鈥?0. CrossRef
    29. Bursuker I, North RJ. Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J Exp Med. 1984;159(5):1312鈥?1. CrossRef
    30. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151鈥?4.
    31. Levings MK, Sangregorio R, Roncarolo MG. Human CD25(+)CD4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med. 2001;193(11):1295鈥?02. CrossRef
    32. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001;193(11):1285鈥?4. CrossRef
    33. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med. 2001;193(11):1303鈥?0. CrossRef
    34. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736鈥?4. CrossRef
    35. Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL, et al. Analysis of FOXP3 protein expression in human CD4+CD25 +regulatory T cells at the single-cell level. Eur J Immunol. 2005;35(6):1681鈥?1. doi:10.1002/eji.200526189 . CrossRef
    36. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057鈥?1. doi:10.1126/science.1079490 . CrossRef
    37. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701鈥?1. doi:10.1084/jem.20060772 . CrossRef
    38. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693鈥?00. doi:10.1084/jem.20060468 . CrossRef
    39. Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes. 2009;58(3):652鈥?2. doi:10.2337/db08-1168 . CrossRef
    40. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899鈥?11. doi:10.1016/j.immuni.2009.03.019 . CrossRef
    41. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490鈥?00. doi:10.1038/nri2785 . CrossRef
    42. Baecher-Allan C, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol. 2006;176(8):4622鈥?1. CrossRef
    43. Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L, et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity. 2008;28(6):870鈥?0. doi:10.1016/j.immuni.2008.03.018 . CrossRef
    44. Miyara M, Sakaguchi S. Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol. 2011;89(3):346鈥?1. doi:10.1038/icb.2010.137 . CrossRef
    45. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, et al. DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol. 2008;38(12):3274鈥?1. doi:10.1002/eji.200838950 . CrossRef
    46. Li L, Kim J, Boussiotis VA. IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. J Immunol. 2010;185(7):4148鈥?3. doi:10.4049/jimmunol.1001536 . CrossRef
    47. Li L, Patsoukis N, Petkova V, Boussiotis VA. Runx1 and Runx3 are involved in the generation and function of highly suppressive IL-17-producing T regulatory cells. PLoS ONE. 2012;7(9):e45115. doi:10.1371/journal.pone.0045115 . CrossRef
    48. Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, et al. Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med. 2012;4(164):164ra59. doi:10.1126/scitranslmed.3004566 .
    49. Groux H, O鈥橤arra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389(6652):737鈥?2. doi:10.1038/39614 . CrossRef
    50. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233鈥?. CrossRef
    51. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941鈥?2. doi:10.1038/nri1498 . CrossRef
    52. Chakraborty NG, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol. 2004;65(8):794鈥?02. doi:10.1016/j.humimm.2004.05.012 . CrossRef
    53. Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207鈥?4. CrossRef
    54. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775鈥?7. doi:10.1016/j.cell.2008.05.009 . CrossRef
    55. Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007;19(4):345鈥?4. doi:10.1093/intimm/dxm014 . CrossRef
    56. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012;37(5):785鈥?9. doi:10.1016/j.immuni.2012.09.010 . CrossRef
    57. Picca CC, Larkin J 3rd, Boesteanu A, Lerman MA, Rankin AL, Caton AJ. Role of TCR specificity in CD4+CD25+ regulatory T-cell selection. Immunol Rev. 2006;212:74鈥?5. doi:10.1111/j.0105-2896.2006.00416.x . CrossRef
    58. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27c:1鈥?. doi:10.1016/j.coi.2013.12.005 . CrossRef
    59. Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood. 2006;107(7):2830鈥?. doi:10.1182/blood-2005-06-2403 . CrossRef
    60. Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J, et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood. 2006;108(10):3371鈥?. doi:10.1182/blood-2006-02-005660 . CrossRef
    61. Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Investig. 2005;115(7):1953鈥?2. doi:10.1172/jci23963 . CrossRef
    62. Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA+ subpopulation of CD4+ CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006;108(13):4260鈥?. doi:10.1182/blood-2006-06-027409 . CrossRef
    63. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol. 2005;6(4):338鈥?4. doi:10.1038/ni1180 . CrossRef
    64. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10(6):595鈥?02. doi:10.1038/ni.1731 . CrossRef
    65. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature. 2009;458(7236):351鈥?. doi:10.1038/nature07674 . CrossRef
    66. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986鈥?1. doi:10.1126/science.1172702 . CrossRef
    67. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17(8):983鈥?. doi:10.1038/nm.2426 . CrossRef
    68. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17(8):975鈥?2. doi:10.1038/nm.2425 . CrossRef
    69. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271鈥?. doi:10.1126/science.1160062 . CrossRef
    70. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353鈥?2. doi:10.1038/ni1536 . CrossRef
    71. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. 1997;94(5):1914鈥?. CrossRef
    72. Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol. 2004;172(10):5967鈥?2. CrossRef
    73. Nishikawa H, Jager E, Ritter G, Old LJ, Gnjatic S. CD4+CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood. 2005;106(3):1008鈥?1. doi:10.1182/blood-2005-02-0607 . CrossRef
    74. Nishikawa H, Qian F, Tsuji T, Ritter G, Old LJ, Gnjatic S, et al. Influence of CD4+CD25+ regulatory T cells on low/high-avidity CD4+ T cells following peptide vaccination. J Immunol. 2006;176(10):6340鈥?. CrossRef
    75. Schott AK, Pries R, Wollenberg B. Permanent up-regulation of regulatory T-lymphocytes in patients with head and neck cancer. Int J Mol Med. 2010;26(1):67鈥?5.
    76. Watanabe MA, Oda JM, Amarante MK, Cesar Voltarelli J. Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev. 2010;29(4):569鈥?9. doi:10.1007/s10555-010-9247-y . CrossRef
    77. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8聽+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(51):18538鈥?3. doi:10.1073/pnas.0509182102 . CrossRef
    78. Wicherek L, Jozwicki W, Windorbska W, Roszkowski K, Lukaszewska E, Wisniewski M, et al. Analysis of Treg cell population alterations in the peripheral blood of patients treated surgically for ovarian cancer鈥攁 preliminary report. Am J Reprod Immunol. 2011;66(5):444鈥?0. doi:10.1111/j.1600-0897.2011.01024.x . CrossRef
    79. Suzuki K, Kadota K, Sima CS, Nitadori J, Rusch VW, Travis WD, et al. Clinical impact of immune microenvironment in stage I lung adenocarcinoma: tumor interleukin-12 receptor beta2 (IL-12Rbeta2), IL-7R, and stromal FoxP3/CD3 ratio are independent predictors of recurrence. J Clin Oncol. 2013;31(4):490鈥?. doi:10.1200/jco.2012.45.2052 . CrossRef
    80. Cabrera R, Ararat M, Xu Y, Brusko T, Wasserfall C, Atkinson MA, et al. Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. CII. 2013;62(4):737鈥?6. doi:10.1007/s00262-012-1380-8 .
    81. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J, et al. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer. 2013;133(1):98鈥?07. doi:10.1002/ijc.27990 . CrossRef
    82. Yoshii M, Tanaka H, Ohira M, Muguruma K, Iwauchi T, Lee T, et al. Expression of Forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the stomach. Br J Cancer. 2012;106(10):1668鈥?4. doi:10.1038/bjc.2012.141 .
    83. de Vries IJ, Castelli C, Huygens C, Jacobs JF, Stockis J, Schuler-Thurner B, et al. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents. Clin Cancer Res. 2011;17(4):841鈥?. doi:10.1158/1078-0432.ccr-10-2227 . CrossRef
    84. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5(2):e38. doi:10.1371/journal.pbio.0050038 . CrossRef
    85. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 2011;186(7):4388鈥?5. doi:10.4049/jimmunol.1003251 . CrossRef
    86. Pesenacker AM, Bending D, Ursu S, Wu Q, Nistala K, Wedderburn LR. CD161 defines the subset of FoxP3+ T cells capable of producing pro-inflammatory cytokines. Blood. 2013;. doi:10.1182/blood-2012-08-443473 .
    87. Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y, et al. CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res. 2003;63(18):6042鈥?0.
    88. Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG, et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+聽mice. Cancer Res. 2005;65(10):3998鈥?004. doi:10.1158/0008-5472.can-04-3104 . CrossRef
    89. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101e5鈥?114e5. doi:10.1053/j.gastro.2010.01.058 . CrossRef
    90. Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev. 2006;212:256鈥?1. doi:10.1111/j.0105-2896.2006.00423.x . CrossRef
    91. Newberry RD, Lorenz RG. Organizing a mucosal defense. Immunol Rev. 2005;206:6鈥?1. doi:10.1111/j.0105-2896.2005.00282.x . CrossRef
    92. Li L, Boussiotis VA. The role of IL-17-producing Foxp3+CD4+ T cells in inflammatory bowel disease and colon cancer. Clin Immunol. 2013;148(2):246鈥?3. doi:10.1016/j.clim.2013.05.003 . CrossRef
    93. Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868鈥?8. CrossRef
    94. Kanai T, Nemoto Y, Kamada N, Totsuka T, Hisamatsu T, Watanabe M, et al. Homeostatic (IL-7) and effector (IL-17) cytokines as distinct but complementary target for an optimal therapeutic strategy in inflammatory bowel disease. Curr Opin Gastroenterol. 2009;25(4):306鈥?3. doi:10.1097/MOG.0b013e32832bc627 . CrossRef
    95. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol. 2010;30(1):80鈥?. doi:10.1007/s10875-009-9345-1 . CrossRef
    96. Witowski J, Ksiazek K, Jorres A. Interleukin-17: a mediator of inflammatory responses. CMLS. 2004;61(5):567鈥?9. doi:10.1007/s00018-003-3228-z . CrossRef
    97. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125鈥?0. doi:10.1084/jem.20030451 . CrossRef
    98. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24(6):677鈥?8. doi:10.1016/j.immuni.2006.06.002 . CrossRef
    99. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821鈥?2. doi:10.1146/annurev.immunol.25.022106.141557 . CrossRef
    100. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407(2):348鈥?4. doi:10.1016/j.bbrc.2011.03.021 . CrossRef
    101. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121鈥?3. doi:10.1016/j.cell.2006.07.035 . CrossRef
    102. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179鈥?9. doi:10.1016/j.immuni.2006.01.001 . CrossRef
    103. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236鈥?0. doi:10.1038/nature06878 . CrossRef
    104. Ziegler SF. FOXP3: not just for regulatory T cells anymore. Eur J Immunol. 2007;37(1):21鈥?. doi:10.1002/eji.200636929 . CrossRef
    105. d鈥橦ennezel E, Piccirillo CA. Analysis of human FOXP3+ Treg cells phenotype and function. Methods Mol Biol. 2011;707:199鈥?18. doi:10.1007/978-1-61737-979-6_13 . CrossRef
    106. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298鈥?06. doi:10.1038/nrc3245 . CrossRef
    107. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433鈥?1. doi:10.4049/jimmunol.0904028 . CrossRef
    108. Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. PLoS ONE. 2011;6(8):e24226. doi:10.1371/journal.pone.0024226 . CrossRef
    109. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669鈥?6. doi:10.1038/nm0603-669 . CrossRef
    110. Glinka Y, Prud鈥檋omme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol. 2008;84(1):302鈥?0. doi:10.1189/jlb.0208090 . CrossRef
    111. Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med. 2012;209(10):1713鈥?2. doi:10.1084/jem.20120822 , s1鈥搒19. CrossRef
    112. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723鈥?2. doi:10.1084/jem.20120914 , s1. CrossRef
    113. Povoleri GA, Scotta C, Nova-Lamperti EA, John S, Lombardi G, Afzali B. Thymic versus induced regulatory T cells鈥攚ho regulates the regulators? Front Immunol. 2013;4:169. doi:10.3389/fimmu.2013.00169 . CrossRef
    114. Meng HX, Cao Y, Zhang SQ, Bi ZG, Yamakawa M. Distribution of regulatory T cells and interaction with dendritic cells in the synovium of rheumatoid arthritis. Scand J Rheumatol. 2012;41(6):413鈥?0. doi:10.3109/03009742.2012.696135 . CrossRef
    115. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378鈥?5. doi:10.1038/ng1909 . CrossRef
    116. Baron U, Turbachova I, Hellwag A, Eckhardt F, Berlin K, Hoffmuller U, et al. DNA methylation analysis as a tool for cell typing. Epigenetics. 2006;1(1):55鈥?0. CrossRef
    117. Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol. 2007;37(9):2378鈥?9. doi:10.1002/eji.200737594 . CrossRef
    118. Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;. doi:10.4049/jimmunol.1203473 .
    119. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414鈥?3. doi:10.1016/j.immuni.2013.03.002 . CrossRef
    120. Tatura R, Zeschnigk M, Adamzik M, Probst-Kepper M, Buer J, Kehrmann J. Quantification of regulatory T cells in septic patients by real-time PCR-based methylation assay and flow cytometry. PLoS ONE. 2012;7(11):e49962. doi:10.1371/journal.pone.0049962 . CrossRef
    121. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011;186(7):3918鈥?6. doi:10.4049/jimmunol.1003099 . CrossRef
    122. Schwarzer A, Wolf B, Fisher JL, Schwaab T, Olek S, Baron U, et al. Regulatory T-Cells and associated pathways in metastatic renal cell carcinoma (mRCC) patients undergoing DC-vaccination and cytokine-therapy. PLoS ONE. 2012;7(10):e46600. doi:10.1371/journal.pone.0046600 . CrossRef
    123. Appel H, Wu P, Scheer R, Kedor C, Sawitzki B, Thiel A, et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol. 2011;38(11):2445鈥?1. doi:10.3899/jrheum.110377 . CrossRef
    124. Peiseler M, Sebode M, Franke B, Wortmann F, Schwinge D, Quaas A, et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol. 2012;57(1):125鈥?2. doi:10.1016/j.jhep.2012.02.029 . CrossRef
    125. Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES, et al. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun. 2012;38(1):49鈥?8. doi:10.1016/j.jaut.2011.12.009 . CrossRef
    126. Alexander T, Sattler A, Templin L, Kohler S, Gross C, Meisel A, et al. Foxp3+Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann Rheum Dis. 2013;72(9):1549鈥?8. doi:10.1136/annrheumdis-2012-202216 . CrossRef
  • 刊物主题:Allergology; Immunology; Medicine/Public Health, general; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-0755
文摘
The tumor microenvironment composites a mixture of immune lymphoid cells, myeloid cells, stromal cells with complex cytokines, as well as numerous lymphovascular vessels. Colorectal cancer (CRC) is a common malignancy and one of the leading causes of tumor-related death in the United States and worldwide. The immune status in the tumor microenvironment contributes to the survival of a patient with CRC. Regulatory T cells (Tregs) are considered a key factor in immune escape and immunotherapy failure among cancer patients. The transcription factor forkhead box P3 (FOXP3) is a crucial intracellular marker and also a key developmental and functional factor for CD4+CD25+ Tregs. Tregs are correlated with survival in various human neoplasms, and elevated proportions of Tregs are usually associated with unfavorable clinical outcomes. However, the role of Tregs in CRC remains controversial. High densities of tumor-infiltrating Tregs in CRC patients are reported to be correlated with worse or better outcomes. And Tregs may not be predictive of prognosis after resection of the primary tumor. The exact explanations for these discordant results remain unclear. The heterogeneous instincts of cell phenotype, gene expression, and functional activities of Tregs may partly contribute this contrasting result. Furthermore, the lack of a robust marker for identifying Tregs or due to the different techniques applied is also account. The Treg-specific demethylated region (TSDR) was recently reported to be a specific epigenetic marker for natural Tregs (nTregs), which can stably express FOXP3. The FOXP3-TSDR demethylation assay may be an promising technique for CRC-related nTregs studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700