用户名: 密码: 验证码:
The Preparation and Performance of a New Polyurethane Vascular Prosthesis
详细信息    查看全文
  • 作者:Wei He (1) (2)
    Zuojun Hu (1)
    Anwu Xu (3)
    Ruiming Liu (1)
    Henghui Yin (1)
    Jingsong Wang (1)
    Shenming Wang (1)
  • 关键词:Polyurethane ; Small ; caliber ; Vascular prosthesis ; Electrospin ; Mechanical performance ; Biocompatibility
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:66
  • 期:3
  • 页码:855-866
  • 全文大小:1094KB
  • 参考文献:1. Nieponice, A., Soletti, L., Guan, J., Deasy, B. M., Huard, J., Wagner, W. R., et al. (2008). Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. / Biomaterials, / 29, 825鈥?33. CrossRef
    2. Ouyang, C.-X., LI, Q., Wang, W.-C., Zhou, F., Xu, W.-L., & Li, W.-B. (2008). Blood compatibility of small-caliber vascular grafts. / Journal of Clinical Rehabilitative Tissue Engineering Research, / 12(6), 1119鈥?123.
    3. Sun, Y.-J., Liu, Y.-G., & Guan, J. (2004). Comparing research of fine structural changes after repairing femoral artery by used three kinds of femorave in grafting methods in dogs. / Chinese Journal of Microsurgery, / 23(2), 133鈥?34.
    4. Kannan, R. Y., Salacinski, H. J., Butler, P. E., Hamilton, G., & Seifalian, A. M. (2005). Current status of prosthetic bypass grafts: A review. / Journal of Biomedical Materials Research. Part B, Applied Biomaterials, / 74(1), 570鈥?81. CrossRef
    5. Lepidi, S., Grego, F., Vindigni, V., Zavan, B., Tonello, C., Deriu, G. P., et al. (2006). Hyaluronan biodegradable scaffold for small-caliber artery grafting: preliminary results in an animal mode. / European Journal of Vascular and Endovascular Surgery, / 32(4), 411鈥?47. CrossRef
    6. Niklason, L. E. (1999). Techview: medical technology. Replacement arteries made to order. / Science, / 286(5444), 1493鈥?494. CrossRef
    7. Cardinal, K. O., Bonnema, G. T., Hofer, H., Barton, J. K., & Williams, S. K. (2006). Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. / Tissue Engineering, / 12(12), 3431鈥?438. CrossRef
    8. Esper, R. J., Nordaby, R. A., Vilarino, J. O., Paragano, A., Cacharron, J. L., & Machado, R. A. (2006). Endothelial dysfunction: A comprehensive appraisal. / Cardiovascular Diabetology, / 5(1), 4鈥?. CrossRef
    9. Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. / Journal of Vascular Surgery, / 37(2), 472鈥?80. CrossRef
    10. Abbott, W. M., & Vignati, J. J. (1995). Prosthetic grafts: when are they a reasonable alternative? / Seminars in Vascular Surgery, / 8(3), 236鈥?45.
    11. Herring, M., Gardner, A., & Glover, J. (1978). A single-staged technique for seeding vascular grafts with autologous endothelium. / Surgery, / 84, 498鈥?04.
    12. Tanake, E. (1995). Healing process of high porous EPTFE graft wrapped in the omental pedicle flap-experimental study of portal vein replacement. / Hokkaido Lgaku Zasshi, / 70, 697鈥?15.
    13. Isenberg, B. C., Williams, C., & Tranquillo, R. T. (2006). Endothelialization and flow conditioning of fibrin-based media-equivalents. / Annals of Biomedical Engineering, / 34(6), 971鈥?85. CrossRef
    14. Zhao, H.-S., Cai, H.-B., Pan, Z.-Q., & Gao, Y. (2005). Study on polyurethane biomaterials as macroporous carriers. / Journal of Functional Polymers, / 18(3), 361鈥?67.
    15. Sakas, D. E., Charnvises, K., Borges, L. F., & Zervas, N. T. (1990). Biologically inert synthetic dural substitutes. Appraisal of a medical-grade aliphatic polyurethane and a polysiloxane-carbonate block copolymer. / Journal of Neurosurgery, / 73(6), 936鈥?41. CrossRef
    16. Grasel, T. G., Pitt, W. G., Murthy, K. D., McCoy, T. J., & Cooper, S. L. (1987). Properties of extruded poly(tetramethylene oxide)鈥損olyurethane block copolymers for blood-contacting applications. / Biomaterials, / 1987(8), 329鈥?40. CrossRef
    17. Hu, G.-D. (2002). Haemacompatibility assessment of ployurethanes. / Foreign Medical Sciences Biomedical Engineering, / 25(6), 271鈥?73.
    18. Gu, H.-Q., & Xu, G.-F. (1993). / Biomedical materials science (1st ed.). Tianjin: Tianjin Science & Technology Translation Publishing Corp.
    19. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. / Electrostatics, / 35(2鈥?), 151鈥?60. CrossRef
    20. Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. / Journal of Applied Physics, / 87(9), 4531鈥?547. CrossRef
    21. Shin, Y. M., Hohman, M. M., Brenner, M. P., & Rutledge, G. C. (2001). Electrospinning: A whipping liquid jet generates submicron polymer fibers. / Applied Physics Letters, / 78(8), 1149鈥?151. CrossRef
    22. Reneker, D. H., Kataphinan, W., Theron, A., Zussman, E., & Yarin, A. L. (2002). Nanofiber garlands of polycaprolactone by electrospinning. / Polymer, / 2002(43), 6785鈥?794. CrossRef
    23. He, C.-L., Huang, Z.-M., Zhang, Y.-Z., Liu, L., Han, X.-J., & Lu, Y.-N. (2005). Preparation of tissue engineering nano/micro-fibrous scaffolds with electrospinning. / Progress in Natural Science, / 15(10), 1175鈥?182.
    24. Bao, Y.-B., Wang, J.-J., & Hu, Q.-L. (2008). Electrospinning of polymers and application studies as tissue engineering scaffolds. / Journal of Textile Research, / 29(2), 124鈥?28.
    25. Wang, S.-D., Zhang, Y.-Z., Wang, H.-W., Yin, G.-B., Dong, Z.-H., Fu, W.-G., et al. (2009). Structure and properties of electrospun polylactide/silk fibroin-gelatin tubular scaffold. / Journal of Textile Research, / 30(6), 6鈥?4.
    26. Stitzel, J., Liu, J., Lee, S. J., Komura, M., Berry, J., Soker, S., et al. (2006). Controlled fabrication of a biological vascular substitute. / Biomaterials, / 27(7), 1088鈥?094. CrossRef
    27. Cheng, X.-F., Zou, D.-W., Wu, J.-G., Tuo, X.-L., Wang, X.-G., Liu, J.-L., et al. (2009). Cytotoxicity of 4 novel injectable prosthetic nucleus pulposus in mice fibroblast cells. / Acta Academiae Medicinae Militaris Tertiae, / 31(5), 412鈥?15.
    28. Kim, H. M., Kokubo, T., Fujibayashi, S., Nishiquchi, S., & Nakamura, T. (2000). Bioactive macroporous titanium surface layer on titanium substrate. / Journal of Biomedical Materials Research, / 2000(52), 553鈥?57. CrossRef
    29. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. / Composites Science and Technology, / 63(15), 2223鈥?253. CrossRef
    30. He, M.-J., Chen, W.-X., & Dong, X.-X. (1990). / Polymer physics (3rd ed.). Shanghai: Fudan University Press.
    31. Xu, C., Yang, F., Wang, S., & Ramakrishna, S. (2004). In vitro study of human vascular endothelial cell function on materials with various surface roughness. / Journal of Biomedical Materials Research, / 71A(1), 154鈥?61. CrossRef
    32. Yang, F., Xu, C.-Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(l -lactic acid) nanofibrous scaffold. / Journal of Biomaterials Science, Polymer Edition, / 15(12), 1483鈥?497. CrossRef
    33. Zhong, S., Teo, W. E., Zhu, X., Beuerman, R. W., Ramakrishna, S., & Yung, L. Y. (2006). An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. / Journal of Biomedical Materials Research Part A, / 79(3), 456鈥?63. CrossRef
    34. Choi, J. S., Lee, S. J., Christ, G. J., Atala, A., & Yoo, J. J. (2008). The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. / Biomaterials, / 29(19), 2899鈥?906. CrossRef
    35. How, T. V., Guidoin, R., & Young, S. K. (1992). Engineering design of vascular prosthesis. / Proceedings of the Institution of Mechanical Engineers, Part H, / 206(2), 61鈥?1. CrossRef
    36. Wang, S.-D., Yin, G.-B., Zhang, Y.-Z., Wang, H.-W., Jiang, X.-J., & Dong, Z.-H. (2008). Structure and biomechanical properties of electrospun PLA tubular scaffold. / Journal of Materials Engineering, / 2008(10), 316鈥?20.
    37. Martz, H., Beaudoin, G., Paynter, R., King, M., Marceau, D., & Guidoin, R. (1987). Physiochemical characterization of hydrophilic microporous polyurethane vascular graft. / Journal of Biomedical Materials Research, / 21(3), 399鈥?12. CrossRef
    38. Michael, S. (1998). Polyurethanes in vascular grafts. / Rubber World, / 218(1), 44鈥?6.
    39. Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone鈥揺lastin blends: Potential for bioresorbable vascular grafts. / Biomedical Materials, / 1(2), 72鈥?0. CrossRef
    40. Vaz, C. M., Van, T. S., Bouten, C. V., & Baaijens, F. P. (2005). Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. / Acta Biomaterial, / 1(5), 575鈥?82. CrossRef
    41. Pan, S.-R., Yang, S.-F., Yi, W., Zheng, H.-L., & Tao, J. (2005). Effect of preparation conditions for small-diameter artificial polyurethane vascular graft on microstructure and mechanical properties. / Chinese J Reparative and Reconstructive Surgery, / 19(1), 64鈥?9.
    42. Stock, U. A., Nagashima, M., Khalil, P. N., Nollert, G. D., Herden, T., Sperling, J. S., et al. (2000). Tissue-engineered valved conduits in the pulmonary circulation. / Journal of Thoracic and Cardiovascular Surgery, / 119(4), 732鈥?35. CrossRef
    43. Luo, X.-J., & Wu, Q.-Y. (2001). The development on small-caliber prosthetic graft. / Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, / 8(3), 193鈥?96.
    44. Hamaguchi, M., Okuda, Y., & Katami, K. (1994). Short-term thrombogenicity and patency of expanded polytetrafluoroethyline (ePTFE) vascular grafts with varying wall structure. / The Japanese Journal of Artificial Organs, / 23, 832鈥?37.
    45. Van, M. B., Stegenga, B., Van Leeuwen, M. B., Van Kooten, T. G., & Bos, R. R. (2006). A long-term invitro biocompatibility study of a biodegradable polyurethane and its degradation products. / Journal of Biomedical Materials Research Part A, / 76(2), 377鈥?85.
    46. You, S.-H., Wang, X., Huang, J.-C., et al. (2003). / Biological evaluation of medical devices. Part 5: Test for in vitro cytotoxicity (pp. 84鈥?8). Beijing: China Standard Press.
    47. Conte, M. S. (1998). The ideal small arterial substitute: A search for the Holy Grail? / Faseb Journal, / 2003(12), 43鈥?5.
  • 作者单位:Wei He (1) (2)
    Zuojun Hu (1)
    Anwu Xu (3)
    Ruiming Liu (1)
    Henghui Yin (1)
    Jingsong Wang (1)
    Shenming Wang (1)

    1. Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
    2. Department of Surgery, GuangZhou Women and Children鈥檚 Medical Center, Guangzhou, 510623, China
    3. Division of Nanomaterials and Chemistry, Hefei National Laboratory for Microscopic Physical Sciences, University of Science and Technology of China, Hefei, 230026, China
文摘
We investigated the performance of small-caliber polyurethane (PU) small-diameter vascular prosthesis generated using the electrospinning technique. PU was electrospun into small-diameter, small-caliber tubular scaffolds for potential application as vascular grafts. We investigated the effects of electrospinning conditions (solution concentration, mandrel rotation speed) on the microstructure and porosity of the scaffolds for the purpose of preparing scaffolds with optimum microstructures and properties. We evaluated the mechanical properties of the scaffolds by tensile tests and the cytotoxicity of the PU small-diameter, small-caliber PU synthetic vascular graft by the MTT assay. The adhesion of endothelial cells to the PU scaffold was characterized by Hoechst staining and fluorescence microscopy, and we measured endothelial cell proliferation on the PU scaffold by the CCK-8 assay. We analyzed the prosthesis microstructure and endothelial cell morphology using scanning electron microscopy. With increasing PU concentration in the electrospinning solution, the fiber diameter of the vascular graft increased and the porosity decreased. In addition, with increasing electrospinning time, the wall thickness increased and the porosity decreased. We found that regular fiber orientation can be obtained by adjusting the rotation speed of the mandrel. Cell proliferation was not inhibited as the small-caliber PU synthetic vascular grafts showed little cytotoxicity. The endothelial cells had faster adherence to the PU scaffolds than to the PTFE surface during the initial contact. After prolonged cell culture, significantly higher endothelial cell proliferation rate was observed in the PU scaffold groups than the PTFE group. We obtained small-caliber PU vascular grafts with optimal fiber arrangement, excellent mechanical properties, and optimal biocompatibility by optimizing the electrospinning conditions. This study provides in vitro biocompatibility data that is helpful for the clinical application of the PU small-diameter, small-caliber PU vascular grafts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700