用户名: 密码: 验证码:
Free Vibration Analysis of a Rotating Mori–Tanaka-Based Functionally Graded Beam via Differential Transformation Method
详细信息    查看全文
  • 作者:Farzad Ebrahimi ; Mohadese Mokhtari
  • 关键词:Free vibration ; Mori–Tanaka model ; Functionally graded material ; Rotating beam ; Differential transformation method
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:2
  • 页码:577-590
  • 全文大小:1,176 KB
  • 参考文献:1.Yamanouchi, M.; Koizumi, M.; Hirai, M.T.; Shiota, I.: Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)
    2.Kurşun A., Topçu M.: Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load. Arab. J. Sci. Eng. 38(12), 3531–3549 (2013)CrossRef
    3.Akbari Alashti R., Ahmadi S.A.: Buckling analysis of functionally graded thick cylindrical shells with variable thickness using DQM. Arab. J. Sci. Eng. 39, 8121–8133 (2014)MathSciNet CrossRef
    4.Akbari Alashti R., Tarahhomi M.H.: Thermo-elastic analysis of functionally graded toroidal shells. Arab. J. Sci. Eng. 39, 2127–2142 (2014)MathSciNet CrossRef
    5.Abdeen Mostafa A.M., Bichir S.M.: Analysis of simply supported thin FGM rectangular plate resting on fluid layer. Arab. J. Sci. Eng. 38(12), 3267–3273 (2013)CrossRef
    6.Mukhtar F.M., Al-Gadhib A.H.: Collocation method for elastoplastic analysis of a pressurized functionally graded tube. Arab. J. Sci. Eng. 39(11), 7701–7716 (2014)MathSciNet CrossRef
    7.Civalek O.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26(2), 171–186 (2004)CrossRef
    8.Kapuria S., Bhattacharyya M., Kumar A.N.: Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)CrossRef
    9.Sina S.A., Navazi H.M., Haddadpour H.: An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30(3), 741–747 (2009)CrossRef
    10.Şimşek M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)CrossRef
    11.Ke L.L., Yang J., Kitipornchai S.: An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45(6), 743–752 (2010)MATH MathSciNet CrossRef
    12.Pradhan K.K., Chakraverty S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B Eng. 51, 175–184 (2013)CrossRef
    13.Gibson L.J., Ashby M.F., Karam G.N., Wegst U., Shercliff H.R.: The mechanical properties of natural materials. II. Microstructures for mechanical efficiency. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 450, 141–162 (1995)CrossRef
    14.Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5), 571–574 (1973)CrossRef
    15.Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)CrossRef
    16.Reddy J.N., Chin C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)CrossRef
    17.Sundararajan N., Prakash T., Ganapathi M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42(2), 152–168 (2005)CrossRef
    18.Chehel Amirani M., Khalili S.M.R., Nemati N.: Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos. Struct. 90(3), 373–379 (2009)CrossRef
    19.Shen H.S., Wang Z.X.: Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94(7), 2197–2208 (2012)CrossRef
    20.Bui, T.Q.; Khosravifard, A.; Zhang, C.; Hematiyan, M.R.; Golub, M.V.: Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng. Struct. 47, 90–104 (2013)
    21.Akgöz B., Civalek O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mechanica 224(9), 2185–2201 (2013)MATH MathSciNet CrossRef
    22.Akgöz B., Civalek O.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)CrossRef
    23.Malik M., Dang H.H.: Vibration analysis of continuous systems by differential transformation. Appl. Math. Comput. 96(1), 17–26 (1998)MATH MathSciNet CrossRef
    24.Ho S.H., Chen C.O.K.: Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform. Int. J. Mech. Sci. 48(11), 1323–1331 (2006)MATH CrossRef
    25.Kaya M.O.: Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircr. Eng. Aerosp. Technol. 78(3), 194–203 (2006)CrossRef
    26.Mei C.: Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput. Struct. 86(11), 1280–1284 (2008)CrossRef
    27.Giurgiutiu V., Stafford R.O.: Semi-analytic methods for frequencies and mode shapes of rotor blades. Vertica 1(4), 291–306 (1977)
    28.Hodges D.Y., Rutkowski M.Y.: Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J. 19(11), 1459–1466 (1981)MATH CrossRef
    29.Du H., Lim M.K., Liew K.M.: A power series solution for vibration of a rotating Timoshenko beam. J. Sound Vib. 175(4), 505–523 (1994)MATH CrossRef
    30.Reddy J.N.: On the dynamic behaviour of the Timoshenko beam finite elements. Sadhana 24(3), 175–198 (1999)MATH MathSciNet CrossRef
    31.Banerjee J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000)MATH CrossRef
    32.Civalek O., Kiracioglu O.: Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Methods Biomed. Eng. 26(12), 1890–1898 (2010)MATH
    33.Li X.-F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318(4), 1210–1229 (2008)CrossRef
    34.Mohanty S.C., Dash R.R., Rout T.: Free vibration of a functionally graded rotating Timoshenko beam using FEM. Adv. Struct. Eng. 16(2), 405–418 (2013)CrossRef
    35.Shahba A., Attarnejad R., Zarrinzadeh H.: Free vibration analysis of centrifugally stiffened tapered functionally graded beams. Mech. Adv. Mater. Struct. 20(5), 331–338 (2013)CrossRef
    36.Rajasekaran S.: Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl. Math. Model. 37(6), 4440–4463 (2013)MATH MathSciNet CrossRef
    37.Li L., Zhang D.G., Zhu W.D.: Free vibration analysis of a rotating hub–functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333(5), 1526–1541 (2014)CrossRef
    38.Zhang D.G., Zhou Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mater. Sci. 44(2), 716–720 (2008)CrossRef
    39.Hodges, D.H.; Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. Natl. Aeronaut. Space Adm. (1974)
    40.Banerjee J.R.: Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. J. Sound Vib. 247(1), 97–115 (2001)CrossRef
    41.Chen C.K., Ho S.H.: Application of differential transformation to eigenvalue problems. Appl. Math. Comput. 79(2), 173–188 (1996)MATH MathSciNet CrossRef
    42.Wattanasakulpong N., Mao Q.: Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Compos. Struct. 119, 346–354 (2015)CrossRef
  • 作者单位:Farzad Ebrahimi (1)
    Mohadese Mokhtari (1)

    1. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, P.O.B. 16818-34149, Qazvin, Iran
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
In this paper, free vibration analysis of a rotating Mori–Tanaka-based functionally graded (FG) beam is investigated based on Timoshenko beam theory. The physical neutral axis position for the mentioned FG beam is determined. By using a semi-analytical differential transformation method (DTM), the governing differential equations are transformed into recurrence relations and the boundary conditions are converted to algebraic equations. The material properties of the rotating FG beam are supposed to vary across the thickness direction based on Mori–Tanaka micromechanics model. In the classical beam theory, the effects of transverse shear deformation and rotary inertia are not taken into consideration, while the Timoshenko beam model takes these effects into account. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of rotating FG beams. The good agreement between the results of this article and those available in the literature validated the presented approach. The detailed mathematical derivations are presented, and numerical investigations are performed, while the emphasis is placed on investigating the effect of functionally graded microstructure, mode number, slenderness ratios, rotational speed and hub radius and boundary conditions on the normalized natural frequencies of the rotating FG beam in detail. It is explicitly shown that the vibration behavior of a rotating FG beam is significantly influenced by these effects. Keywords Free vibration Mori–Tanaka model Functionally graded material Rotating beam Differential transformation method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700