用户名: 密码: 验证码:
Influence of electron distribution on efficiency droop for GaN-based light emitting diodes
详细信息    查看全文
  • 作者:Jiajia Fu ; Lixia Zhao ; Ning Zhang ; Junxi Wang ; Jinmin Li
  • 关键词:InGaN quantum barriers ; Electron distribution ; Carrier recombination ; Efficiency droop
  • 刊名:Journal of Solid State Lighting
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:2
  • 期:1
  • 全文大小:2302KB
  • 参考文献:1.Schubert MF, Xu J, Kim JK, Schubert EF, Kim MH, Yoon S, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett. 2008;93:041102. doi:10.1063/1.2963029.CrossRef
    2.Wang T, Nakagawa D, Wang J, Sugahara T, Sakai S. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells. Appl Phys Lett. 1998;73:3571. doi:10.1063/1.122810.CrossRef
    3.Nguyen HP, Cui K, Zhang S, Djavid M, Korinek A, Botton GA, et al. Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett. 2012;12:1317鈥?3. doi:10.1021/nl203860b.CrossRef
    4.Choi S, Ji MH, Kim J, Jin Kim H, Satter MM, Yoder PD, et al. Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Appl Phys Lett. 2012;101:161110. doi:10.1063/1.4759044.CrossRef
    5.Monemar B, Sernelius BE. Defect related issues in the 鈥渃urrent roll-off鈥?in InGaN based light emitting diodes. Appl Phys Lett. 2007;91:181103. doi:10.1063/1.2801704.CrossRef
    6.Zhao H, Liu G, Arif RA, Tansu N. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electron. 2010;54:1119鈥?4. doi:10.1016/j.sse.2010.05.019.CrossRef
    7.Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys Rev Lett. 2013;110:177406. doi:10.1103/PhysRevLett.110.177406.CrossRef
    8.Cho J, Schubert EF, Kim JK. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photon Rev. 2013;7:408鈥?1. doi:10.1002/lpor.201200025.CrossRef
    9.Liu Z, Wei T, Guo E, Yi X, Wang L, Wang J, et al. Efficiency droop in InGaN/GaN multiple-quantum-well blue light-emitting diodes grown on free-standing GaN substrate. Appl Phys Lett. 2011;99:091104. doi:10.1063/1.3605572.CrossRef
    10.Shen YC, Mueller GO, Watanabe S, Gardner NF, Munkholm A, Krames MR. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett. 2007;91:141101. doi:10.1063/1.2785135.CrossRef
    11.Zhang M, Bhattacharya P, Singh J, Hinckley J. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes. Appl Phys Lett. 2009;95:201108. doi:10.1063/1.3266520.CrossRef
    12.Meneghini M, Trevisanello LR, Meneghesso G, Zanoni E. A Review on the Reliability of GaN-Based LEDs. IEEE Trans Device Mater Reliab. 2008;8:323鈥?1. doi:10.1109/TDMR.2008.921527.CrossRef
    13.Dai Q, Shan Q, Cho J, Schubert EF, Crawford MH, Koleske DD, et al. On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms. Appl Phys Lett. 2011;98:033506. doi:10.1063/1.3544584.CrossRef
    14.Lin GB, Meyaard D, Cho J, Fred Schubert E, Shim H, Sone C. Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Appl Phys Lett. 2012;100:161106. doi:10.1063/1.4704366.CrossRef
    15.Li H, Li P, Kang J, Li Z, Zhang Y, Li Z, et al. Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well. Appl Phys Express. 2013;6:052102. doi:10.7567/apex.6.052102.CrossRef
    16.Ryu HY, ShinJ DS, Shim I. Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material. Appl Phys Lett. 2012;100:131109. doi:10.1063/1.3698113.CrossRef
    17.Kuo YK, Chang JY, Tsai MC, Yen H. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers. Appl Phys Lett. 2009;95:011116. doi:10.1063/1.3176406.CrossRef
    18.Ryu MY, Yu PW, Shin EJ, Lee JI, Yu SK, Oh E, et al. Effects of Si-doping in the barriers on the recombination dynamics in In0.15Ga 0.85N/In0.015Ga0.985N quantum wells. J Appl Phys. 2001;89:634. doi:10.1063/1.1331077.CrossRef
    19.Zhang L, Ding K, Liu NX, Wei TB, Ji XL, Ma P, et al. Theoretical study of polarization-doped GaN-based light-emitting diodes. Appl Phys Lett. 2011;98:101110. doi:10.1063/1.3565173.CrossRef
    20.Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, et al. p-InGaN/AlGaN electron blocking layer for InGaN/GaN blue light-emitting diodes. Appl Phys Lett. 2012;101:261106. doi:10.1063/1.4773187.CrossRef
    21.Ji X, Wei T, Yang F, Lu H, Wei X, Ma P, et al. Efficiency improvement by polarization-reversed electron blocking structure in GaN-based Light-emitting diodes. Opt Express. 2014;22 Suppl 3:A1001鈥?008. doi:10.1364/OE.22.0A1001.CrossRef
    22.Anazawa K, Hassanet S, Fujii K, Nakano Y, Sugiyama M. Growth of strain-compensated InGaN/AlN multiple quantum wells on GaN by MOVPE. J Cryst Growth. 2013;370:82鈥?. doi:10.1016/j.jcrysgro.2012.08.050.CrossRef
    23.Kret S, Dluzewski P, Szczepanska A, Zak M, Czernecki R, Krysko M, et al. Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and x-ray diffraction. Nanotechnology. 2007;18:465707. doi:10.1088/0957-4484/18/46/465707.CrossRef
    24.Lin YS, Ma KJ, Hsu C, Feng SW, Cheng YC, Liao CC, et al. Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells. Appl Phys Lett. 2000;77:2988. doi:10.1063/1.1323542.CrossRef
    25.Liu L, Ling M, Yang J, Xiong W, Jia W, Wang G. Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure. J Appl Phys. 2012;111:093110. doi:10.1063/1.4712030.CrossRef
    26.Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I, et al. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect. Appl Phys Lett. 1998;73:1691. doi:10.1063/1.122247.CrossRef
    27.Moses PG, Van de Walle CG. Band bowing and band alignment in InGaN alloys. Appl Phys Lett. 2010;96:021908. doi:10.1063/1.3291055.CrossRef
    28.Chen CC, Hsieh KL, Chi GC, Chuo CC, ChyiC JI, Chang A. Effect of thermal annealing on high indium content InGaN/GaN single quantum well structures. J Appl Phys. 2001;89:5465. doi:10.1063/1.1363678.CrossRef
    29.Saguatti D, Bidinelli L, Verzellesi G, Meneghini M, Meneghesso G, Zanoni E, et al. Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes. IEEE Transactions on Electron Devices. 2012;59:1402鈥?. doi:10.1109/Ted.2012.2186579.CrossRef
  • 作者单位:Jiajia Fu (1) (2)
    Lixia Zhao (1) (2)
    Ning Zhang (1) (2)
    Junxi Wang (1) (2)
    Jinmin Li (1) (2)

    1. Semiconductor Lighting Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, People鈥檚 Republic of China
    2. State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, 10083, Beijing, People鈥檚 Republic of China
  • 刊物类别:Microwaves, RF and Optical Engineering; Semiconductors; Optical and Electronic Materials; Optics, Op
  • 刊物主题:Microwaves, RF and Optical Engineering; Semiconductors; Optical and Electronic Materials; Optics, Optoelectronics, Plasmonics and Optical Devices; Circuits and Systems; Electronic Circuits and Devices
  • 出版者:Springer International Publishing
  • ISSN:2196-1107
文摘
By modulating the indium composition in the quantum barriers of InGaN-based LEDs, the influence of electron distribution, electron overflow and Auger recombination on the external quantum efficiency (EQE) and droop effect have been investigated. Experimental results as well as numerical simulations reveal that the electron distribution is the key factor to influence both the peak efficiency and droop effect. The results show that the high electron concentration in the individual quantum well can stimulate the Auger recombination and lead to the droop effect instead of the total effective electron concentration, which is more related to the external quantum efficiency. If we modulate the indium composition in the quantum barriers of the InGaN-based LEDs, a uniform electron distribution can be achieved, which can not only enhance the EQE but also avoid the Auger recombination and improve the droop effect. Keywords InGaN quantum barriers Electron distribution Carrier recombination Efficiency droop

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700