用户名: 密码: 验证码:
Response Surface Optimization for Decaffeination and Theophylline Production by Fusarium solani
详细信息    查看全文
  • 作者:Shwetha Nanjundaiah ; Praveena Bhatt…
  • 关键词:Biodecaffeination ; Fusarium solani ; Response surface methodology ; Theophylline
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:178
  • 期:1
  • 页码:58-75
  • 全文大小:2,724 KB
  • 参考文献:1.Suzuki, T., & Waller, G. R. (1998). Metabolism and analysis of caffeine and other methylxanthines in coffee, tea cola, guarana and cacao. In Modern methods of plant analysis (Netu series, HF Linskens and JF Jackson, ed.). Berlin, Heidelberg, Springer-Verlag, 8, 184–210.
    2.Weigel, S., Berger, U., Jensen, E., Kallenborn, R., Thoresen, H., & H¨uhnerfuss, H. (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites. Chemosphere, 56, 583–592.CrossRef
    3.Bressani, R. (1987). Anti-physiological factors in coffee pulp. In J. E. Brahan, & R. Bressani (Eds.), Composition, technology and utilization (pp. 83–88). Guatemala City: Institute of Nutrition of Central America and Panama.
    4.Buerge, I. J., Poiger, T., Muller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37, 691–700.CrossRef
    5.Batish, D. R., Singh, H. P., Kaur, M., Kohli, R. K., & Yadav, S. S. (2008). Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiologiae Plantarum, 30, 401–405.CrossRef
    6.El-Mched, F., Olama, Z., & Holail, H. (2013). Optimization of the environmental and physiological factors affecting microbial caffeine degradation and its application in caffeinated products. Journal of Basic Microbiology, 1, 17–27.
    7.Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Cahill, J. D., Zaugg, S. D., Werner, S. L., Meyer, M. T., & Kryak, D. D. (2005). Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environmental Science & Technology, 39, 5157–5169.CrossRef
    8.Roussos, S., Aquiáhuatl, M. A., Trejo-Hernández, M. R., Perraud, I. G., Favela, E., Ramakrishna, M., Raimbault, M., & Viniegragonzález, G. (1995). Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology, 42, 756–762.CrossRef
    9.Smith, R. M. (1999). Supercritical fluids in separation science—the dreams, the reality and the future. Journal of Chromatography, 856, 83–115.CrossRef
    10.Udayasankar, K., Manohar, B., & Chokkalingam, A. (1986). A note on supercritical carbon dioxide decaffeination of coffee. Journal of Food & Science Technology, 23, 326–328.
    11.Dixon, D., & Johnston, J. (1997). Supercritical fluids (pp. 1544–1569). John Wiley, New York: Encyclopedia of Separation Technology.
    12.Gummadi, S. N., & Santhosh, D. (2010). Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor. Journal of Industrial Microbiology and Biotechnology, 37, 901–908.CrossRef
    13.Mazzafera, P. (2002). Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Scientia Agricola, 59, 815–821.CrossRef
    14.Gummadi, S. N., Bhavya, B., & Ashok, N. (2012). Physiology, biochemistry and possible applications of microbial caffeine degradation. Applied Microbiology, 93, 545–554.
    15.Ahmad, S. A., Ibrahim, S., Shukor, M. Y., Johari, W. L. W., Rahman, N. A. A., & Syed, N. A. (2015). Biodegradation kinetics of caffeine by Leifsonia sp. strain siu. Journal of Chemical and Pharmaceutical Sciences, 8, 312–316.
    16.Sarath Babu, V. R., Patra, S., Thakur, M. S., Karanth, N. G., & Varadaraj, M. C. (2005). Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme and Microbial Technology, 37, 617–624.CrossRef
    17.Ibrahim, S., Shukor, M. Y., Syed, M. A., Johari, W. L. W., & Ahmad, S. A. (2015). Characterization and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Annals of Microbiology. doi:10.​1007/​s13213-015-1108-z .
    18.Lakshmi, V., & Nilanjana, D. (2009). Caffeine degradation by yeasts isolated from caffeine contaminated samples. International Journal of Security and Networks, 1, 47–52.
    19.Vibha, N., Pooja, V. P., Ashwini, P., Supriya, P., Sushma, Y. D., & Vaman, R. C. (2013). A comparative study of caffeine degradation by four different fungi. Journal of Bioremediation, 17, 79–85.CrossRef
    20.Artz, J. S., & Dinner, M. J. (2001). Treatment of cellulite deformities of the thighs with topical aminophylline gel. The Canadian Journal of Plastic Surgery, 119, 1661–1670.
    21.Lentini, A., Tabolacci, C., Mattioli, P., Provenzano, B., & Beninati, S. (2010). Antitumor activity of theophylline in combination with Paclitaxel: a preclinical study on melanoma experimental lung metastasis. Cancer Biotherapy and Radiopharmaceuticals, 25, 497–503.CrossRef
    22.Richard, L. Z., Donald, A. M., Donna, R., Nina, C., Amanda, E., Kathleen, R., & Katharine, K. (2001). Salmeterol plus theophylline combination therapy in the treatment of COPD. Chest, 119, 1661–1670.CrossRef
    23.Gummadi, S. N., Swati, S. D., & Santhosh, D. (2006). Optimization of production of caffeine demethylase by Pseudomonas sp. in a bioreactor. Journal of Industrial Microbiology and Biotechnology, 36, 713–720.CrossRef
    24.Patra, S., Thakur, M.S., & Karanth N.G. (2010). A process for microbial biotransformation of caffeine to theophylline. Ref.No.329/DEL/2006 A.
    25.Al-Araji, L. I. Y., Abd. Rahman, R. N. Z. R., Basri, M., & Salleh, A. B. (2007). Optimisation of rhamnolipids produced by Pseudomonas aeruginosa 181 using Response Surface Modeling. Annals of Microbiology, 57, 571–575.CrossRef
    26.Huck, C. W., Guggenbichler, W., & Bonn, G. K. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Analytica Chimica Acta, 538, 195–203.CrossRef
    27.Suzanne, N.S. (2010). Phenol-Sulfuric Acid Method for Total Carbohydrates, Food Analysis Laboratory Manual, Food Science Texts Series, Springer Science+, Business media, 47-53pp.
    28.Lakshman, K., Rastogi, N. K., & Shamala, T. R. (2004). Simultaneous and comparative assessment of parent and mutant strain of Rhizobium meliloti for nutrient limitation and enhanced polyhydroxyalkanoate (PHA) production using optimization studies. Process Biochemistry, 39, 1977–1983.CrossRef
    29.Triveni, R., Shamala, T. R., & Rastogi, N. K. (2001). Optimized production and utilization of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 36, 787–795.CrossRef
    30.Sharma, M., Rastogi, N. K., & Lokesh, B. R. (2009). Synthesis of structured lipid with balanced omega-3: omega-6 ratio by lipase-catalyzed acidolysis reaction: optimization of reaction using response methodology. Process Biochemistry, 44, 1284–1288.CrossRef
    31.Vijayendra, S. V. N., Rastogi, N. K., Shamala, T. R., Kumar, P. K. A., Kshama, L., & Joshi, G. J. (2007). Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian Journal of Microbiology, 47, 170–175.CrossRef
    32.Asano, Y., Komeda, T., & Yamada, H. (1993). Microbial production of theobromine from caffeine. Bioscience, Biotechnology, and Biochemistry, 57, 1286–1289.CrossRef
    33.Hakil, M., Voisinet, F., Viniegra-Gonza’lez, G., & Augur, C. (1999). Caffeine degradation in solid state fermentation by Aspergillus tamarii: effects of additional nitrogen sources. Process Biochemistry, 35, 103–109.CrossRef
    34.Guzman, A. E. (1983). Efectos de nivel y naturaleza de fuentes de nitrogen0 sobre el mejoramiento de calidad quimico nutritional de la pulpa de café por fermentation solida usando Aspergillus niger. Tesis: Universidad San Carlos de Guatemala, Guatemala.
    35.Peñaloza, W., Molina, M. R., Gomez, R., & Bressani, R. (1985). Solid state fermentation: an alternative to improve the nutritive value of coffee pulp. Applied and Environmental Microbiology, 49, 388–393.
    36.Hakil, M., Denis, S., Viniegra-Gonza’lez, G., & Augur, C. (1998). Degradation and product analysis of caffeine and related methylxanthines by filamentous fungi. Enzyme and Microbial Technology, 22, 355–359.CrossRef
    37.Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.CrossRef
    38.Roussos, S., Hannibal, L., Aquiahuatl, M. A., Trejo-Hernandez, M. R., & Marakis, S. (1994). Caffeine degradation by Penicillium verrucosum in solid state fermentation of coffee pulp: critical effect of additional inorganic and organic nitrogen sources. Journal of Food Science and Technology, 31, 316–319.
  • 作者单位:Shwetha Nanjundaiah (1)
    Praveena Bhatt (1)
    Navin Kumar Rastogi (2)
    Munna Singh Thakur (3)

    1. Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute, Mysore, 570020, India
    2. Food Engineering Department, CSIR—Central Food Technological Research Institute, Mysore, 570020, India
    3. Material Science Department, University of Mysore, Mysore, 570006, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Coffee processing industries generate caffeine-containing waste that needs to be treated and decaffeinated before being disposed. Five fungal isolates obtained on caffeine-containing mineral media were tested for their ability to utilize caffeine at high concentrations. An isolate identified as Fusarium solani could utilize caffeine as a sole source of carbon and nitrogen up to 5 g/l and could degrade it to an extent of 30–53 % in 120 h. Sucrose that was added as an auxiliary substrate (5 g/l) enhanced the biodecaffeination of caffeine to 88 % in 96 h. The addition of co- substrate (sucrose) not only resulted in higher biodecaffeination efficiency, but also reduced the incubation period from the initial 120 to 96 h. Theophylline and 3-methyl xanthine were obtained as the major metabolites of decaffeination at 96 and 120 h, respectively. Response surface methodology used to optimize the process parameters for maximum biodecaffeination as well as theophylline production showed that a pH of 5.8, temperature of 24 °C and inoculum size of 4.8 × 105 spores/ml have resulted in a complete biodecaffeination of caffeine as well as the production of theophylline with a yield of 33 % (w/w). Results thus show that a viable and sustainable process can be developed for the detoxification of caffeine along with the recovery of theophylline, a commercially important chemical.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700