用户名: 密码: 验证码:
A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells
详细信息    查看全文
  • 作者:Xinlai Cheng (1)
    Palvo Holenya (1)
    Suzan Can (1)
    Hamed Alborzinia (1)
    Riccardo Rubbiani (2)
    Ingo Ott (2)
    Stefan W枚lfl (1)

    1. Institut f眉r Pharmazie und Molekulare Biotechnologie
    ; Ruprecht-Karls-Universit盲t Heidelberg ; Im Neuenheimer Feld 364 ; 69120 ; Heidelberg ; Germany
    2. Institute of Medicinal and Pharmaceutical Chemistry
    ; Technische Universit盲t Braunschweig ; Beethovenstrasse 55 ; 38106 ; Braunschweig ; Germany
  • 关键词:Gold(I) NHC complex ; Apoptosis ; Thiolredoxin Reductase inhibitor ; ASK1 ; p38 ; MAPK ; Anti ; cancer drug ; ROS ; PDAC
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:3,460 KB
  • 参考文献:1. Rosenberg, B, VanCamp, L, Trosko, JE, Mansour, VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222: pp. 385-386 CrossRef
    2. Wong, E, Giandomenico, CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99: pp. 2451-2466 CrossRef
    3. Galanski, M, Jakupec, MA, Keppler, BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12: pp. 2075-2094 CrossRef
    4. Boulikas, T, Vougiouka, M (2003) Cisplatin and platinum drugs at the molecular level. (Review). Oncol Rep 10: pp. 1663-1682
    5. Pasini, A, Zunino, F (1987) New Cisplatin Analogs - on the way to better antitumor agents. Angew Chem Int Ed Engl 26: pp. 615-624 CrossRef
    6. Kasper, C, Alborzinia, H, Can, S, Kitanovic, I, Meyer, A, Geldmacher, Y, Oleszak, M, Ott, I, Wolfl, S, Sheldrick, WS (2012) Synthesis and cellular impact of diene-ruthenium(II) complexes: a new class of organoruthenium anticancer agents. J Inorg Biochem 106: pp. 126-133 CrossRef
    7. Alessio, E, Mestroni, G, Bergamo, A, Sava, G (2004) Ruthenium antimetastatic agents. Curr Top Med Chem 4: pp. 1525-1535 CrossRef
    8. Geldmacher, Y, Kitanovic, I, Alborzinia, H, Bergerhoff, K, Rubbiani, R, Wefelmeier, P, Prokop, A, Gust, R, Ott, I, Wolfl, S, Sheldrick, WS (2011) Cellular selectivity and biological impact of cytotoxic rhodium(III) and iridium(III) complexes containing methyl-substituted phenanthroline ligands. ChemMedChem 6: pp. 429-439 CrossRef
    9. Rubbiani, R, Can, S, Kitanovic, I, Alborzinia, H, Stefanopoulou, M, Kokoschka, M, Monchgesang, S, Sheldrick, WS, Wolfl, S, Ott, I (2011) Comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J Med Chem 54: pp. 8646-8657 CrossRef
    10. Rubbiani, R, Kitanovic, I, Alborzinia, H, Can, S, Kitanovic, A, Onambele, LA, Stefanopoulou, M, Geldmacher, Y, Sheldrick, WS, Wolber, G, Prokop, A, Wolfl, S, Ott, I (2010) Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J Med Chem 53: pp. 8608-8618 CrossRef
    11. Fuertes, MA, Alonso, C, Perez, JM (2003) Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103: pp. 645-662 CrossRef
    12. Alborzinia, H, Can, S, Holenya, P, Scholl, C, Lederer, E, Kitanovic, I, Wolfl, S (2011) Real-time monitoring of cisplatin-induced cell death. PLoS One 6: pp. e19714 CrossRef
    13. Alama, A, Tasso, B, Novelli, F, Sparatore, F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14: pp. 500-508 CrossRef
    14. Bedard, K, Krause, KH (2007) The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 87: pp. 245-313 CrossRef
    15. D鈥橝utreaux, B, Toledano, MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8: pp. 813-824 CrossRef
    16. Boonstra, J, Post, JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337: pp. 1-13 CrossRef
    17. Schafer, FQ, Buettner, GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: pp. 1191-1212 CrossRef
    18. Trachootham, D, Alexandre, J, Huang, P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov 8: pp. 579-591 CrossRef
    19. Ceccarelli, J, Delfino, L, Zappia, E, Castellani, P, Borghi, M, Ferrini, S, Tosetti, F, Rubartelli, A (2008) The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int J Cancer 123: pp. 1770-1778 CrossRef
    20. Yip, KW, Reed, JC (2008) Bcl-2 family proteins and cancer. Oncogene 27: pp. 6398-6406 CrossRef
    21. Kirkpatrick, DL, Ehrmantraut, G, Stettner, S, Kunkel, M, Powis, G (1997) Redox active disulfides: The thioredoxin system as a drug target. Oncol Res 9: pp. 351-356
    22. Saitoh, M, Nishitoh, H, Fujii, M, Takeda, K, Tobiume, K, Sawada, Y, Kawabata, M, Miyazono, K, Ichijo, H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J 17: pp. 2596-2606 CrossRef
    23. Fujino, G, Noguchi, T, Matsuzawa, A, Yamauchi, S, Saitoh, M, Takeda, K, Ichijo, H (2007) Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 27: pp. 8152-8163 CrossRef
    24. Masutani, H, Ueda, S, Yodoi, J (2005) The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 12: pp. 991-998 CrossRef
    25. Huang, P, Feng, L, Oldham, EA, Keating, MJ, Plunkett, W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407: pp. 390-395 CrossRef
    26. Fang, J, Sawa, T, Akaike, T, Greish, K, Maeda, H (2004) Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 109: pp. 1-8 CrossRef
    27. Welsh, SJ, Williams, RR, Birmingham, A, Newman, DJ, Kirkpatrick, DL, Powis, G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2: pp. 235-243
    28. Pelicano, H, Carney, D, Huang, P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7: pp. 97-110 CrossRef
    29. Kong, Q, Lillehei, KO (1998) Antioxidant inhibitors for cancer therapy. Med Hypotheses 51: pp. 405-409 CrossRef
    30. Cabello, CM, Bair, WB, Wondrak, GT (2007) Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs 8: pp. 1022-1037
    31. Jemal, A, Siegel, R, Ward, E, Hao, Y, Xu, J, Murray, T, Thun, MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58: pp. 71-96 CrossRef
    32. Burris, HA, Moore, MJ, Andersen, J, Green, MR, Rothenberg, ML, Madiano, MR, Cripps, MC, Portenoy, RK, Storniolo, AM, Tarassoff, P, Nelson, R, Dorr, FA, Stephens, CD, VanHoff, DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol 15: pp. 2403-2413
    33. Bernas, T, Dobrucki, J (2002) Mitochondrial and nonmitochondrial reduction of MTT: Interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47: pp. 236-242 CrossRef
    34. Skehan, P, Storeng, R, Scudiero, D, Monks, A, Mcmahon, J, Vistica, D, Warren, JT, Bokesch, H, Kenney, S, Boyd, MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: pp. 1107-1112 CrossRef
    35. Hingorani, SR, Wang, LF, Multani, AS, Combs, C, Deramaudt, TB, Hruban, RH, Rustgi, AK, Chang, S, Tuveson, DA (2005) Trp53(R172H) and KraS(G12D) cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: pp. 469-483 CrossRef
    36. Berrozpe, G, Schaeffer, J, Peinado, MA, Real, FX, Perucho, M (1994) Comparative-analysis of mutations in the P53 and K-Ras genes in pancreatic-cancer. Int J Cancer 58: pp. 185-191 CrossRef
    37. Kitanovic, I, Can, S, Alborzinia, H, Kitanovic, A, Pierroz, V, Leonidova, A, Pinto, A, Spingler, B, Ferrari, S, Molteni, R, Steffen, A, Metzler-Nolte, N, W枚lfl, S, Gasser, G (2014) A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. Chemistry 20: pp. 2496-2507 CrossRef
    38. Vermes, I, Haanen, C, Steffensnakken, H, Reutelingsperger, C (1995) A novel assay for apoptosis - flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled annexin-V. J Immunol Methods 184: pp. 39-51 CrossRef
    39. Modica-Napolitano, JS, Renshaw, PF (2004) Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Biol Psychiatry 55: pp. 273-277 CrossRef
    40. Salvioli, S, Ardizzoni, A, Franceschi, C, Cossarizza, A (1997) JC-1, but not DiOC(6)(3) or rhodamine 123, is a reliable fluorescent probe to assess Delta Psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. Febs Lett 411: pp. 77-82 CrossRef
    41. Holenya, P, Kitanovic, I, Heigwer, F, Wolfl, S (2011) Microarray-based kinetic colorimetric detection for quantitative multiplex protein phosphorylation analysis. Proteomics 11: pp. 2129-2133 CrossRef
    42. Lee, JC, Laydon, JT, Mcdonnell, PC, Gallagher, TF, Kumar, S, Green, D, Mcnulty, D, Blumenthal, MJ, Heys, JR, Landvatter, SW, Strickler, JE, Mclaughlin, MM, Siemens, IR, Fisher, SM, Livi, GP, White, JR, Adams, JL, Young, PR (1994) A Protein-Kinase Involved in the Regulation of Inflammatory Cytokine Biosynthesis. Nature 372: pp. 739-746 CrossRef
    43. Raingeaud, J, Gupta, S, Rogers, JS, Dickens, M, Han, JH, Ulevitch, RJ, Davis, RJ (1995) Pro-inflammatory cytokines and environmental-stress cause P38 mitogen-activated protein-kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: pp. 7420-7426 CrossRef
    44. Kim, HS, Lee, MS (2005) Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol Cell Biol 25: pp. 6821-6833 CrossRef
    45. Cuadrado, A, Lafarga, V, Cheung, PCF, Dolado, I, Llanos, S, Cohen, P, Nebreda, AR (2007) A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis. Embo J 26: pp. 2115-2126 CrossRef
    46. Wellner, U, Schubert, J, Burk, UC, Schmalhofer, O, Zhu, F, Sonntag, A, Waldvogel, B, Vannier, C, Darling, D, zur Hausen, A, Brunton, VG, Morton, J, Sansom, O, Schuler, J, Stemmler, MP, Herzberger, C, Hopt, U, Keck, T, Brabletz, S, Brabletz, T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: pp. 1487 CrossRef
    47. Wagner, EF, Nebreda, AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: pp. 537-549 CrossRef
    48. Mateescu, B, Batista, L, Cardon, M, Gruosso, T, de Feraudy, Y, Mariani, O, Nicolas, A, Meyniel, JP, Cottu, P, Sastre-Garau, X, Mechta-Grigoriou, F (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17: pp. 1627 CrossRef
    49. Dolado, I, Swat, A, Ajenjo, N, De Vita, G, Cuadrado, A, Nebreda, AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11: pp. 191-205 CrossRef
    50. Cheng, X, Rasque, P, Vatter, S, Merz, KH, Eisenbrand, G (2010) Synthesis and cytotoxicity of novel indirubin-5-carboxamides. Bioorg Med Chem 18: pp. 4509-4515 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Cancer cells in the advanced stage show aberrant antioxidant capacity to detoxify excessive ROS resulting in the compensation for intrinsic oxidative stress and therapeutic resistance. PDAC is one of the most lethal cancers and often associated with a high accumulation of ROS. Recent studies identified gold(I) NHC complexes as potent TrxR inhibitors suppressing cell growth in a wide spectrum of human malignant cell lines at the low micromolar concentration. However, the mechanism of action is not completely elucidated yet. Methods To understand the biological function of gold(I) NHC complexes in PDAC, we used a recently published gold(I) NHC complex, MC3, and evaluated its anti-proliferative effect in four PDAC cell lines, determined by MTT and SRB assays. In further detailed analysis, we analyzed cellular ROS levels using the ROS indicator DHE and mitochondrial membrane potential indicated by the dye JC-1 in Panc1. We also analyzed cell cycle arrest and apoptosis by FACS. To elucidate the role of specific cell signaling pathways in MC3-induced cell death, co-incubation with ROS scavengers, a p38-MAPK inhibitor and siRNA mediated depletion of ASK1 were performed, and results were analyzed by immunoblotting, ELISA-microarrays, qRT-PCR and immunoprecipitation. Results Our data demonstrate that MC3 efficiently suppressed cell growth, and induced cell cycle arrest and apoptosis in pancreatic cancer cells, in particular in the gemcitabine-resistant cancer cells Panc1 and ASPC1. Treatment with MC3 resulted in a substantial alteration of the cellular redox homeostasis leading to increased ROS levels and a decrease in the mitochondrial membrane potential. ROS scavengers suppressed ROS formation and rescued cells from damage. On the molecular level, MC3 blocked the interaction of Trx with ASK1 and subsequently activated p38-associated signaling. Furthermore, inhibition of this pathway by using ASK1 siRNA or a p38 inhibitor clearly attenuated the effect of MC3 on cell proliferation in Panc1 and ASPC1. Conclusions Our results confirm that MC3 is a TrxR inhibitor and show MC3 induced apoptosis in gemcitabine-resistant PDACs. MC3 mediated cell death could be blocked by using anti-oxidants, ASK1 siRNA or p38 inhibitor suggesting that the Trx-ASK1-p38 signal cascade played an important role in gold(I) NHC complexes-mediated cellular damage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700