用户名: 密码: 验证码:
Multiple interior and boundary peak solutions to singularly perturbed nonlinear Neumann problems under the Berestycki–Lions condition
详细信息    查看全文
  • 作者:Youngae Lee ; Jinmyoung Seok
  • 关键词:Mathematics Subject Classification35J20 ; 35J25 ; 35J61
  • 刊名:Mathematische Annalen
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:367
  • 期:1-2
  • 页码:881-928
  • 全文大小:
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1807
  • 卷排序:367
文摘
Let \(\varOmega \) be a smooth bounded domain in \(\mathbb {R}^N\), \(N\ge 3\). We consider the following singularly perturbed nonlinear elliptic problem on \(\varOmega \), $$\begin{aligned} \varepsilon ^2\varDelta v-v+f(v)=0,\quad v>0\ \text {on}\ \varOmega ,\qquad \frac{\partial v}{\partial \nu }=0\quad \text {on}\ \partial \varOmega , \end{aligned}$$where \(\nu \) is an exterior unit normal vector to \(\partial \varOmega \) and a nonlinearity f satisfies subcritical growth condition. It has been known that for any \(l_0, l_1 \in \mathbb {N} \cup \{ 0 \}\), \(l_0+l_1>0\), there exists a solution \(v_\varepsilon \) of the above problem which exhibits \(l_0\)-boundary peaks and \(l_1\)-interior peaks for small \(\varepsilon >0\) under rather strong conditions on f, such as the linearized non-degeneracy condition for a limiting problem. In this paper, we extend the previous result to more general class of f satisfying Berestycki–Lions conditions which we believe to be almost optimal.Mathematics Subject Classification35J2035J2535J61References1.Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)2.Adimurthi, M.G., Yadava, S.L.: The role of the mean curvature in semilinear Neumann problem involving critical exponent. Commun. Partial Differ. Equ. 20, 591–631 (1995)MathSciNetCrossRefMATHGoogle Scholar3.Adimurthi, P.F., Yadava, S.L.: Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity. J. Funct. Anal. 113, 318–350 (1993)MathSciNetCrossRefMATHGoogle Scholar4.Adimurthi, P.F., Yadava, S.L.: Characterization of concentration points and \(L^\infty \)-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent. Differ. Integral Equ. 8, 41–68 (1995)MathSciNetMATHGoogle Scholar5.Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefMATHGoogle Scholar6.Ao, W., Wei, J., Zeng, J.: An optimal bound on the number of interior spike solutions for the Lin–Ni–Takagi problem. J. Funct. Anal. 265(7), 1324–1356 (2013)MathSciNetCrossRefMATHGoogle Scholar7.Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I. Arch. Ration. Mech. Anal. 82, 313–345 (1983)MATHGoogle Scholar8.Byeon, J.: Singularly perturbed nonlinear Neumann problems with a general nonlinearity. J. Differ. Equ. 244, 2473–2497 (2008)MathSciNetCrossRefMATHGoogle Scholar9.Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)MathSciNetCrossRefMATHGoogle Scholar10.Byeon, J., Lee, Y.: Singularly perturbed nonlinear Neumann problems under the conditions of Berestycki and Lions. J. Differ. Equ. 252, 3848–3872 (2012)MathSciNetCrossRefMATHGoogle Scholar11.Byeon, J., Park, J.: Singularly perturbed nonlinear elliptic problems on manifolds. Calc. Var. Partial Differ. Equ. 24, 459–477 (2005)MathSciNetCrossRefMATHGoogle Scholar12.Byeon, J., Tanaka, K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. 15, 1859–1899 (2013)MathSciNetCrossRefMATHGoogle Scholar13.Byeon, J., Tanaka, K.: Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations. Memoirs of the American Mathematical Society, vol. 229, no. 1076. American Mathematical Society. ISBN: 978-0-8218-9163-6 (2014)14.Byeon, J., Tanaka, K.: Multi-bump positive solutions for a nonlinear elliptic problem in expanding tubular domains. Cal. Var. Partial Differ. Equ. 50(1–2), 365–397 (2014)MathSciNetCrossRefMATHGoogle Scholar15.Cerami, G., Passaseo, D., Solimini, S.: Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients. Commun. Pure Appl. Math. 66(3), 372–413 (2013)MathSciNetCrossRefMATHGoogle Scholar16.Coti-Zelati, V., Rabinowitz, P.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^n\). Commun. Pure Appl. Math. 45(10), 1217–1269 (1992)MathSciNetCrossRefMATHGoogle Scholar17.del Pino, M., Felmer, P.L.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883–898 (1999)MathSciNetMATHGoogle Scholar18.del Pino, M., Felmer, P.L.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324, 1–32 (2002)MathSciNetCrossRefMATHGoogle Scholar19.del Pino, M., Felmer, P.L., Wei, J.: On the role of mean curvature in some singularly perturbed Neumann problems. SIAM J. Math. Anal. 31, 63–79 (1999)MathSciNetCrossRefMATHGoogle Scholar20.del Pino, M., Wei, J., Yao, W.: Intermediate reduction method and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials. Online published in Calc. Var. Partial Differ. Equ. doi:10.1007/s00526-014-0756-3 21.Dancer, E.N., Yan, S.: Multipeak solutions for a singularly perturbed Neumann problem. Pac. J. Math. 189, 241–262 (1999)MathSciNetCrossRefMATHGoogle Scholar22.Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)MathSciNetCrossRefMATHGoogle Scholar23.Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Springer, Berlin (1983)24.Gui, C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84, 739–769 (1996)MathSciNetCrossRefMATHGoogle Scholar25.Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158, 1–27 (1999)MathSciNetCrossRefMATHGoogle Scholar26.Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522–538 (2000)MathSciNetCrossRefMATHGoogle Scholar27.Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 47–82 (2000)MathSciNetCrossRefMATHGoogle Scholar28.Han, Q., Lin, F.: Elliptic Partial Differential Equations. Courant Lecture Notes. American Mathematical Society, Providence (2000)29.Jeanjean, L., Tanaka, K.: A remark on least energy solutions in \(\mathbb{R}^N\). Proc. Am. Math. Soc. 131, 2399–2408 (2003)MathSciNetCrossRefMATHGoogle Scholar30.Jeanjean, L., Tanaka, K.: A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3, 445–455 (2003)MathSciNetCrossRefMATHGoogle Scholar31.Li, Y.Y.: On a singularly perturbed equation with Neumann boundary condition. Commun. Partial Differ. Equ. 23, 487–545 (1998)MathSciNetMATHGoogle Scholar32.Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)MathSciNetCrossRefMATHGoogle Scholar33.Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1, 223–283 (1984)MathSciNetMATHGoogle Scholar34.Ni, W.M., Pan, X., Takagi, I.: Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents. Duke Math. J. 67, 1–20 (1992)MathSciNetCrossRefMATHGoogle Scholar35.Ni, W.M., Takagi, I.: Point condensation generated by a reaction–diffusion system in axially symmetric domains. Jpn. J. Ind. Appl. Math. 12, 327–365 (1995)MathSciNetCrossRefMATHGoogle Scholar36.Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)MathSciNetCrossRefMATHGoogle Scholar37.Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)MathSciNetCrossRefMATHGoogle Scholar38.Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)MathSciNetCrossRefMATHGoogle Scholar39.Wang, Z.Q.: On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Ration. Mech. Anal. 120, 375–399 (1992)MathSciNetCrossRefMATHGoogle Scholar40.Wei, J.: On the interior spike layer solutions to a singularly perturbed Neumann problem. Tohoku Math. J. 2(50), 159–178 (1998)MathSciNetCrossRefMATHGoogle ScholarCopyright information© Springer-Verlag Berlin Heidelberg 2016Authors and AffiliationsYoungae Lee1Jinmyoung Seok2Email author1.Center for Advanced Study in Theoretical SciencesNational Taiwan UniversityTaipeiTaiwan2.Department of MathematicsKyonggi UniversitySuwonRepublic of Korea About this article CrossMark Publisher Name Springer Berlin Heidelberg Print ISSN 0025-5831 Online ISSN 1432-1807 About this journal Reprints and Permissions Article actions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700