用户名: 密码: 验证码:
Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations
详细信息    查看全文
  • 作者:J. M. Donoso ; R. Picañol ; O. Serra ; W. Howad ; S. Alegre ; P. Arús…
  • 关键词:Fruit quality ; Introgression ; Leaf morphology ; Phenology ; Powdery mildew resistance ; Prunus persica ; Prunus dulcis
  • 刊名:Molecular Breeding
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 全文大小:862 KB
  • 参考文献:Arús P, Messeguer R, Viruel M, Tobutt K, Dirlewanger E, Santi F, Quarta R, Ritter E (1994) The European Prunus mapping project: progress in the almond linkage map. Euphytica 77(1–2):97–100CrossRef
    Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547CrossRef
    Beavis W (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162
    Byrne DH, Raseira MB, Bassi D, Piagnani MC, Gasic K, Reighard GL, Moreno MA, Pérez S (2012) Peach. In: Badenes ML, Byrne DH (eds) Fruit breeding (handbook of plant breeding). Springer, New York, pp 513–569
    Cao K, Zheng Z, Wang L et al (2014) Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415PubMedCentral PubMed
    Carrillo-Mendoza O, Chaparro JX, Williamson J (2013) Branching and blind node incidence in interspecific backcross families of peach. HortScience 48:1119–1124
    Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773CrossRef PubMed
    Connors CH (1920) Some notes on the inheritance of unit characters in the peach. Proc Am Soc Hortic Sci 16:24–36
    Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hortic Sci 68:113–120
    Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 98:18–31CrossRef
    Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896PubMedCentral CrossRef PubMed
    Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13CrossRef
    Dirlewanger E, Quero-Garcia J, Le Dantec L et al (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292PubMedCentral CrossRef PubMed
    Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P (2015) High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Hortic Res 2:15016PubMedCentral CrossRef PubMed
    Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRef
    Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179CrossRef
    Espley RV, Brendolise C, Chagné D et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183PubMedCentral CrossRef PubMed
    Felipe AJ (2009) ‘Felinem, ‘Garnem’ and ‘Monegro’ almond × peach hybrid rootstocks. HortSci 44:196–197
    Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50CrossRef
    Fresnedo-Ramírez J, Bink MCAM, van de Weg E, Famula TR, Crisosto CH, Frett TJ, Gasic K, Peace CP, Gradziel TM (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breeding 35:166CrossRef
    Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381CrossRef
    Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-not nematode resistance in peach. J Am Soc Hortic Sci 130(1):24–33
    Gradziel TM (2003) Interspecific hybridizations and subsequent gene introgression within Prunus subgenus Amygdalus. Acta Hortic 622:249–255CrossRef
    Kester DE, Raddi P, Asay R (1973) Correlation among chilling requirements for germination, blooming and leafing in almond (Prunus amygdalus Batsch). Genetics 74:s135
    Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRef PubMed
    Li XW, Meng XQ, Jia HJ et al (2013) Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genet 14:84PubMedCentral CrossRef PubMed
    Micheletti D, Dettori MT, Micali S et al (2015) Whole-genome analysis of diversity and SNP-major gene association in Peach Germplasm. PLoS ONE 10(9):e0136803PubMedCentral CrossRef PubMed
    Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes 6:689–700CrossRef
    Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genom 10:587CrossRef
    Pacheco I, Eduardo I, Rossini L, Vecchieti A, Bassi D (2009) QTL mapping for peach (Prunus persica (L.) Batsch) resistance to powdery mildew and brown rot. In: Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress. Torino, Italy
    Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45:150–152
    Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288CrossRef
    Quilot B, Wu BH, Kervella J, GénardM FoulongneM, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897CrossRef PubMed
    Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071CrossRef
    Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929CrossRef PubMed
    Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52–68PubMedCentral CrossRef PubMed
    Rosyara UR, Bink MCAM, van de Weg E, Zhang GR, Wang DC, Sebolt A, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni AF (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breeding 32(4):875–887CrossRef
    Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304CrossRef
    Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389CrossRef
    Sauge MH, Lambert P, Pascal T (2012) Co-localisation of host plant resistance QTLs affecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree. Heredity 108:292–301PubMedCentral CrossRef PubMed
    Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552
    Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611CrossRef
    Shen Z, Confolent C, Lambert P, Poëssel J-L, Quilot-Turion B, Yu M, Ma R, Pascal T (2013) Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435–1446CrossRef
    Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomic. Plant Physiol 147:985–1003PubMedCentral CrossRef PubMed
    Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2013) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Rep 31:387–397CrossRef
    Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832CrossRef
    Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233CrossRef PubMed
    Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0. Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen
    Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297CrossRef
    Verde I, Bassil N, Scalabrin S et al (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE 7:e35668PubMedCentral CrossRef PubMed
    Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRef PubMed
    Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78CrossRef PubMed
    Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRef
    Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278CrossRef
    Zhang JB, Sebolt AM, Wang D, Bink M, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36CrossRef
    Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han YP (2014) Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biol 14:388PubMedCentral CrossRef PubMed
  • 作者单位:J. M. Donoso (1) (3)
    R. Picañol (1) (4)
    O. Serra (1)
    W. Howad (1)
    S. Alegre (2)
    P. Arús (1)
    I. Eduardo (1)

    1. IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
    3. INIA, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
    4. Rijk Zwaan, Finca La Marina-Pj. Lo Contreras s/n, 30395, La Puebla, Cartagena, Spain
    2. IRTA, FruitCentre, Parc Cientific i Tecnològic Agroalimentari de Lleida (PCiTAL), Edifici Fruitcentre, Parc de Gardeny, 25003, Lleida, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9788
文摘
Genetic analysis of a diverse set of 42 traits for flower (5), phenology (9), fruit quality (19), leaf (8) and disease resistance (1) was carried out in two interspecific almond × peach populations, an F2 (T × E) and a BC1 (T1E), from the cross between ‘Texas’ almond and ‘Earlygold’ peach. Traits related to flower, phenology, fruit quality, leaf morphology and resistance to powdery mildew were phenotyped over 3 years in two locations and studied for co-segregation with a large set of SNP and SSR markers. Three maps were used, one for the T × E and two for the T1E (T1E and E) population. Nine major genes were identified and mapped: anther color (Ag/ag and Ag2/ag2), flower color (Fc2/fc2), maturity date (MD/md), almond fruit type (almond vs. peach; Alf/alf), juiciness (Jui/jui), blood flesh (DBF2/dbf2), powdery mildew resistance (Vr3) and flower type (showy/non-showy; Sh/sh). These genes were often located in genome positions different from those for major genes for similar traits mapped before. Two of them explain fundamental aspects that define the fruit of peach with respect to that of almond: Alf and Jui, for its thick and juicy mesocarp, respectively. The genetics of quantitative traits was studied, and 32 QTLs were detected, with consistent behavior over the years. New alleles identified from almond for important traits such as red skin color, blood flesh, fruit weight and powdery mildew resistance may prove useful for the introduction of new variability into the peach gene pool used in commercial breeding programs. Keywords Fruit quality Introgression Leaf morphology Phenology Powdery mildew resistance Prunus persica Prunus dulcis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700