3Pt*–MNDI was determined to be τ CS and τ CS. The lifetimes of the CS states were determined to be τ CR1?=?75?ns (95?%) and τ CR2 and τ CR. Formation and decay of the CS states are discussed in terms the Marcus theory and the spin-correlated radical pair mechanism." />
用户名: 密码: 验证码:
Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by twisted phenylene bridges
详细信息    查看全文
  • 作者:Ryoji Sugimura (1)
    Shuichi Suzuki (1)
    Masatoshi Kozaki (1)
    Kazutoshi Keyaki (2)
    Koichi Nozaki (2)
    Hironori Matsushita (3)
    Noriaki Ikeda (3)
    Keiji Okada (1)
  • 关键词:Photoinduced electron transfer ; Phenothiazine ; Naphthalene diimide ; Platinum complex
  • 刊名:Research on Chemical Intermediates
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:39
  • 期:1
  • 页码:185-204
  • 参考文献:1. K.E. McAuley, P.K. Fyfe, J.P. Ridge, N.W. Isaacs, R.J. Cogdell, M.R. Jones, Proc. Natl. Acad. Sci. USA 96, 14706-4711 (1999) CrossRef
    2. G.J. Kavarnos, / Fundamentals of Photoinduced Electron Transfer (Wiley, New York, 1993)
    3. J.W. Verhoeven, J. Photochem. Photobiol. C 7, 40-0 (2006) CrossRef
    4. M. Borgstr?m, N. Shaikh, O. Johansson, M.F. Anderlund, S. Styring, B. ?kermark, A. Magnuson, L. Hammarstr?m, J. Am. Chem. Soc. 127, 17504-7515 (2005) CrossRef
    5. L. Flamigni, J.-P. Collin, J.-P. Sauvage, Acc. Chem. Res. 41, 857-71 (2008) CrossRef
    6. L. Flamigni, E. Baranoff, J.-P. Collin, J.-P. Sauvage, Chem. Eur. J. 12, 6592-606 (2006) CrossRef
    7. S. Chakraborty, T.J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, Inorg. Chem. 44, 6865-878 (2005) CrossRef
    8. J.E. McGarrah, Y.-J. Kim, M. Hissler, R. Eisenberg, Inorg. Chem. 40, 4510-511 (2001) CrossRef
    9. M. Hissler, J.E. McGarrah, W.B. Connick, D.K. Geiger, S.D. Cummings, R. Eisenberg, Coord. Chem. Rev. 208, 115-37 (2000) CrossRef
    10. S.D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 118, 1949-960 (1996) CrossRef
    11. W. Paw, S.D. Cummings, M.A. Mansour, W.B. Connick, D.K. Geiger, R. Eisenberg, Coord. Chem. Rev. 171, 125-50 (1998) CrossRef
    12. S. Suzuki, R. Sugimura, M. Kozaki, K. Keyaki, K. Nozaki, N. Ikeda, K. Akiyama, K. Okada, J. Am. Chem. Soc. 131, 10374-0375 (2009) CrossRef
    13. H. Kawauchi, S. Suzuki, M. Kozaki, K. Okada, D.-M.S. Islam, Y. Araki, O. Ito, K. Yamanaka, J. Phys. Chem. A 112, 5878-884 (2008) CrossRef
    14. Y. Nomura, Y. Takeuchi, J. Chem. Soc. B 956-60 (1970)
    15. M. Hissler, W.B. Connick, D.K. Geiger, J.E. McGarrah, D. Lipa, R.J. Lachicotte, R. Eisenberg, Inorg. Chem. 39, 447-57 (2000) CrossRef
    16. MOPAC2009, J.J.P. Stewart, / Stewart Computational Chemistry, version 9.211W (2009). http://OpenMOPAC.net, Accessed June 4, 2012
    17. T. Ohno, K. Nozaki, M. Haga, Inorg. Chem. 31, 548-55 (1992) CrossRef
    18. A. Yoshimura, K. Nozaki, N. Ikeda, T. Ohno, J. Phys. Chem. 100, 1630-637 (1996) CrossRef
    19. J.J.H. McDowell, Acta. Cryst. B32, 5-0 (1976)
    20. C.L. Klein, J.M. Conrad III, S.A. Morris, Acta. Cryst. C41, 1202-204 (1985)
    21. T. Okamoto, M. Kuratsu, M. Kozaki, K. Hirotsu, A. Ichimura, T. Matsushita, K. Okada, Org. Lett. 6, 3493-496 (2004) CrossRef
    22. A.Z. Weller, Phys. Chem. Neue Folge 133, 93-8 (1982) CrossRef
    23. M. Lor, L. Viaene, R. Pilot, E. Fron, S. Jordens, G. Schweitzer, T. Weil, K. Müllen, J.W. Verhoeven, M. Van der Auweraer, F.C. De Schryver, J. Phys. Chem. B 108, 10721-0731 (2004) CrossRef
    24. H. Oevering, M.N. Paddon-Row, M. Heppener, A.M. Oliver, E. Cotsaris, J.W. Verhoeven, N.S. Hush, J. Am. Chem. Soc. 109, 3258-269 (1987) CrossRef
    25. A.L. Thompson, T.-S. Ahn, K.R.J. Thomas, S. Thayumanavan, T. Martínez, C.J. Bardeen, J. Am. Chem. Soc. 127, 16348-6349 (2005) CrossRef
    26. A.B. Ricks, G.C. Solomon, M.T. Colvin, A.M. Scott, K. Chen, M.A. Ratner, M.R. Wasielewski, J. Am. Chem. Soc. 132, 15427-5434 (2010) CrossRef
    27. G.L. Closs, M.D.E. Forbes, J.R. Jr. Norris, J. Phys. Chem. 91, 3592-599 (1987)
    28. P.J. Hore, in / Advanced EPR in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 405-40
    29. Z.E.X. Dance, Q. Mi, D.W. McCamant, M.J. Ahrens, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. B 110, 25163-5173 (2006) CrossRef
    30. T. Miura, A.M. Scott, M.R. Wasielewski, J. Phys. Chem. C 114, 20370-0379 (2010) CrossRef
  • 作者单位:Ryoji Sugimura (1)
    Shuichi Suzuki (1)
    Masatoshi Kozaki (1)
    Kazutoshi Keyaki (2)
    Koichi Nozaki (2)
    Hironori Matsushita (3)
    Noriaki Ikeda (3)
    Keiji Okada (1)

    1. Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
    2. Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 930-8555, Japan
    3. Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
  • ISSN:1568-5675
文摘
Two triads (i.e., 3PTZ–Pt–MNDI and 10PTZ–Pt–MNDI) consisting of 3-phenothiazine (3PTZ) or 10-phenothiazine (10PTZ), bipyridine–diacetylide platinum complex (Pt), and naphthalene diimide (MNDI) chromophores linked by highly twisted biphenylene spacers have been prepared. The formation and decay of the charge-separated (CS) states in toluene were studied by use of picosecond and nanosecond laser photolysis via selective excitation of the Pt moiety. The time required for formation of the CS state, PTZ+–Pt–MNDI?/sup>, from PTZ-sup class="a-plus-plus">3Pt*–MNDI was determined to be τ CS?=?280?ps for 3PTZ+–Pt–MNDI?/sup> and τ CS?=?230?ps for 10PTZ+–Pt–MNDI?/sup>. The lifetimes of the CS states were determined to be τ CR1?=?75?ns (95?%) and τ CR2?=?285?ns (5?%) for 3PTZ+–Pt–MNDI?/sup> and τ CR?=?830?ns for 10PTZ+–Pt–MNDI?/sup>. Formation and decay of the CS states are discussed in terms the Marcus theory and the spin-correlated radical pair mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700