用户名: 密码: 验证码:
Modeling of the dynamic behavior of machine tools: influences of damping, friction, control and motion
详细信息    查看全文
文摘
In the process of designing a machine tool virtual models are required to predict the dynamic behavior and optimize the machine tool performance. For this purpose, the different influencing factors mass, stiffness and damping properties as well as friction forces, feed drive controls and movements have to be considered in the simulation. However, usually no suitable models and modeling approaches are available for all of these various influencing factors. In this paper, models are provided for the mentioned influencing factors. Subsequently, a modeling approach is proposed, which allows to predict the dynamic behavior with high accuracy. By using this modeling approach, the influencing factors are investigated and evaluated with regard to their effects on the vibration behavior of a machine tool. The nonlinear friction forces and the linear dissipation sources have the greatest impact on the damping behavior. In comparison, the impact of the feed drive control on the vibration behavior is low. Movements can greatly influence the vibration behavior. Their effects are mainly restricted to the axial modes of the feed drives. At these modes, the damping ratios can vary under motion by up to ±35% compared to a standstill. With these insights and the proposed models and modeling approaches new possibilities arise to predict and optimize the dynamic behavior of a machine tool and thus to enhance the machine tool performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700