用户名: 密码: 验证码:
Notes on Discrete Gaussian Scale Space
详细信息    查看全文
  • 作者:Martin Tschirsich ; Arjan Kuijper
  • 关键词:Image processing ; Discrete scale space ; Topological graphs ; Deep structure
  • 刊名:Journal of Mathematical Imaging and Vision
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:51
  • 期:1
  • 页码:106-123
  • 全文大小:2,390 KB
  • 参考文献:1. Becciu, A., Duits, R., Janssen, B., Florack, L., van Assen, H.C.: Cardiac motion estimation using covariant derivatives and helmholtz decomposition. In: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges - Second International Workshop, STACOM 2011, Held in Conjunction with MICCAI 2011, Toronto, Sept 22, 2011, Revised Selected Papers, LNCS 7085, pp. 263-73, 2011.
    2. Biasotti, S., Falcidieno, B., Spagnuolo M.: Extended Reeb graphs for surface understanding and description. In Borgefors G., Nystrm, I., Sanniti di Baja G. (eds.) Discrete Geometry for Computer Imagery 2000. Lecture Notes in Computer Science 1953, pp. 185-97. (2000)
    3. Binotto, A., Weber, D., Daniel, C., Stork, A., Eduardo Pereira, C., Kuijper, A., Fellner, D.: Iterative sle solvers over a CPU–GPU platform. In: 12th IEEE International Conference on High Performance Computing and Communications, IEEE HPCC-10, pp. 305-13. Melbourne, Sep 1- 2010, IEEE (2010)
    4. Brimkov, Valentin E., Barneva, Reneta P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1-), 203-27 (June 2004)
    5. Duits, R., Florack, L.M.J., de Graaf, J., ter Haar, B.M.: Romeny. On the axioms of scale space theory. J. Math. Imaging. Vis. 20(3), 267-98 (2004) CrossRef
    6. Duits, Remco, Franken, Erik: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of hardi images. Int. J. Comput. Vis. 92(3), 231-64 (2011) CrossRef
    7. Duits, Remco, Tom, C.J., Dela, Haije, Creusen, Eric J., Arpan, Ghosh: Morphological and linear scale spaces for fiber enhancement in dw-mri. J. Math. Imaging Vis. 46(3), 326-68 (2013) CrossRef
    8. Felsberg, Michael, Duits, Remco, Florack, Luc: The monogenic scale space on a bounded domain and its applications. Scale-Space, LNCS 2695, 209-24 (2003)
    9. Florack, Luc: A spatio-frequency trade-off scale for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 1050-055 (2000) CrossRef
    10. Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: isophotes, critical points and separatrices. Image Vis. Comput. 13(7), 543-57 (September 1995)
    11. Griffin, L.D., Colchester, A., Robinson, G.: Scale and segmentation of grey-level images using maximum gradient paths. Image Vis. Comput. 10(5), 389-02 (1992) CrossRef
    12. Hancock, Edwin R., Wilson, Richard C.: Pattern analysis with graphs: parallel work at Bern and York. Pattern Recognit. Lett. 33(7), 833-41 (2012) CrossRef
    13. Iijima, T.: Basic theory on normalization of a pattern (in case of typical one-dimensional pattern). Bull. Electr. Lab. 26, 368-88 (1962)
    14. Janssen, B., Duits, R., ter Haar Romeny, B.M.: Linear image reconstruction by Sobolev norms on the bounded domain. In: SSVM, LNCS 4485, pp. 55-7 (2007)
    15. Kanters, F., Florack, L., Duits, R., Platel, B., ter Haar Romeny, B.: Scalespaceviz: alpha-scale spaces in practice. Pattern Recognit. Image Anal. 17, 106-16 (2007) CrossRef
    16. Kanters, F., Lillholm, M., Duits, R., Janssen, B., Platel, B., Florack, L. M. J., ter Haar Romeny, B.M.: On image reconstruction from multiscale top points. In: Scale Space and PDE Methods in Computer Vision, LNCS 3459, pp. 431-42 (2005)
    17. Kanters, F.M.W., Florack, L.M.J.: Deep structure, singularities, and computer vision. Eindhoven University of Technology, Technical report, Sept 2003
    18. Kenyon, R.: The Laplacian on planar graphs and graphs on surfaces. ArXiv e-prints, Mar 2012
    19. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363-70 (1984)
文摘
Gaussian scale space is a well-known linear multi-scale representation for continuous signals. The exploration of its so-called deep structure by tracing critical points over scale has various theoretical applications and allows for the construction of a scale space hierarchy tree. However, implementation issues arise, caused by discretization and quantization errors. In order to develop more robust scale space based algorithms, the discrete nature of computer processed signals has to be taken into account. We propose suitable neighborhoods, boundary conditions, and sampling methods. In analogy to prevalent approaches and inspired by Lindeberg’s scale space primal sketch, a discretized diffusion equation is derived, including requirements imposed by the chosen neighborhood and boundary condition. The resulting discrete scale space respects important topological invariants such as the Euler number, a key criterion for the successful implementation of algorithms operating on critical points in its deep structure. Relevant properties of the discrete diffusion equation and the Eigenvalue decomposition of its Laplacian kernel are discussed and a fast and robust sampling method is proposed. We finally discuss properties of topological graphs under the influence of smoothing, setting the stage for more robust deep structure extraction algorithms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700