用户名: 密码: 验证码:
Diastereoselective reaction of 1,3-dihydroxy calixarene with acylisocyanates: new and easy approach for preparing inherently chiral calyx[4]arenes
详细信息    查看全文
  • 作者:V. I. Boyko ; A. B. Rozhenko ; V. V. Pirozhenko ; S. V. Shishkina…
  • 关键词:Inherent chirality ; Calixarenes ; X ; ray structure determination ; Diastereomeric excess ; DFT
  • 刊名:Structural Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:261-272
  • 全文大小:1,350 KB
  • 参考文献:1.Asfari M-Z, Böhmer V, Harrowfield J, Vicens J (2001) Calixarenes 2001. Springer, Dordrecht
    2.Gutsche CD (2008) Calixarenes: an introduction (monographs in supramolecular chemistry). Royal Society of Chemistry, Cambridge
    3.Yilmaz M (2013) Calixarene-based receptors for molecular recognition. Turk J Chem 37:558–585. doi:10.​3906/​kim-1303-5 CrossRef
    4.Zheng YS, Luo J (2011) Inherently chiral calixarenes: a decade’s review. J Incl Phenom Macrocycl Chem 71:35–56. doi:10.​1007/​s10847-011-9935-4 CrossRef
    5.Wiegmann S, Mattay J (2011) Inherently chiral resorcin[4]arenes: a new concept for improving the functionality. Org Lett 13:3226–3228. doi:10.​1021/​ol200972w CrossRef
    6.Shirakawa S, Kimura T, Murata SI, Shimizu S (2009) Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions. J Org Chem 74:1288–1296. doi:10.​1021/​jo8024412 CrossRef
    7.McIldowie MJ, Mocerino M, Ogden MI (2010) A brief review of Cn-symmetric calixarenes and resorcinarenes. Supramol Chem 22:13–39. doi:10.​1080/​1061027090298066​3 CrossRef
    8.Shirakawa S, Shimizu S (2010) Improved design of inherently chiral calix[4]arenes as organocatalysts. New J Chem 34:1217. doi:10.​1039/​b9nj00685k CrossRef
    9.Fraschetti C, Letzel MC, Paletta M et al (2012) Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. J Mass Spectrom 47:72–78. doi:10.​1002/​jms.​2028 CrossRef
    10.Li SY, Xu YW, Liu JM, Su CY (2011) Inherently chiral calixarenes: synthesis, optical resolution, chiral recognition and asymmetric catalysis. Int J Mol Sci 12:429–455. doi:10.​3390/​ijms12010429 CrossRef
    11.Slavik P, Dudic M, Flidrova K et al (2012) Unprecedented meta-substitution of calixarenes: direct way to inherently chiral derivatives. Org Lett 14:3628–3631. doi:10.​1021/​ol301420t CrossRef
    12.Li SZ, Yang K, Liu HB et al (2013) Inherently chiral biscalixarene cone–cone conformers consisting of calix[4]arene and calix[5]arene subunits. Tetrahedron Lett 54:5901–5906. doi:10.​1016/​j.​tetlet.​2013.​08.​091 CrossRef
    13.Luo J, Shen LC, Chung WS (2010) Inherently chiral biscalix[4]arenes: design and syntheses. J Org Chem 75:464–467. doi:10.​1021/​jo9023792 CrossRef
    14.Talotta C, Gaeta C, Troisi F et al (2010) Absolute configuration assignment of inherently chiral calix[4]arenes using DFT calculations of chiroptical properties. Org Lett 12:2912–2915. doi:10.​1021/​ol101098x CrossRef
    15.Pan S, Wang DX, Zhao L, Wang MX (2012) Synthesis and functionalization of inherently chiral tetraoxacalix[2]arene[2]pyridines. Org Lett 14:6254–6257. doi:10.​1021/​ol303019q CrossRef
    16.Xu B, Carroll PJ, Swager TM (1996) Chiral metallocalix[4]arenes: resolution by diastereomeric tungsten(VI) alkoxides. Angew Chem Int Ed 35:2094–2097. doi:10.​1002/​anie.​199620941 CrossRef
    17.Li SY, Zheng QY, Chen CF, Huang ZT (2005) Preparation of enantiopure inherently chiral calix[5]arenes. Tetrahedron Asymmetry 16:641–645. doi:10.​1016/​j.​tetasy.​2004.​11.​080 CrossRef
    18.Li SZ, Shi J, Yang K, Luo J (2012) Chemical resolution and chiral recognition of an inherently chiral biscalix[4]arene cone-partial cone conformer. Tetrahedron 68:8557–8563. doi:10.​1016/​j.​tet.​2012.​08.​019 CrossRef
    19.Xu ZX, Zhang C, Yang Y et al (2008) Effective nonenzymatic kinetic resolution of racemic m-nitro-substituted inherently chiral aminocalix[4]arenes. Org Lett 10:477–479. doi:10.​1021/​ol702884u CrossRef
    20.Xu ZX, Zhang C, Huang ZT, Chen CF (2010) Efficient synthesis and resolution of meta-substituted inherently chiral aminocalix[4]arene derivatives. Chin Sci Bull 55:2859–2869. doi:10.​1007/​s11434-010-3121-8 CrossRef
    21.Shirakawa S, Moriyama A, Shimizu S (2007) Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Org Lett 9:3117–3119. doi:10.​1021/​ol071249p CrossRef
    22.Yakovenko AV, Boyko VI, Danylyuk O et al (2007) Diastereoselective lower rim (1S)-camphorsulfonylation as the shortest way to the inherently chiral calix[4]arene. Org Lett 9:1183–1185. doi:10.​1021/​ol0628513 CrossRef
    23.Karpus AO, Yesypenko OA, Andronov LP et al (2012) Stereoselective synthesis of enantiomerically pure inherently chiral p-tert-butylcalix[4]arene carboxylic acids. Tetrahedron Asymmetry 23:1243–1250. doi:10.​1016/​j.​tetasy.​2012.​07.​016 CrossRef
    24.Browne JK, McKervey MA, Pitarch M et al (1998) Enzymatic synthesis of nonracemic inherently chiral calix[4]arenes by lipase-catalysed transesterification. Tetrahedron Lett 39:1787–1790. doi:10.​1016/​S0040-4039(97)10865-6 CrossRef
    25.Herbert SA, Arnott GE (2009) An asymmetric ortholithiation approach to inherently chiral calix[4]arenes. Org Lett 11:4986–4989. doi:10.​1021/​ol902238p CrossRef
    26.Herbert SA, van Laeren LJ, Castell DC, Arnott GE (2014) Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space. Beilstein J Org Chem 10:2751–2755. doi:10.​3762/​bjoc.​10.​291 CrossRef
    27.Yakovenko AV, Boyko VI, Kushnir OV et al (2004) Selective Mono-O-acylation of C2V-symmetrical calix[4]arenediols with acylisocyanates. Org Lett 6:2769–2772. doi:10.​1021/​ol049030n CrossRef
    28.Boyko VI, Kliachina MA, Kalchenko VI (2007) New facile method for preparing acylisocyanates by thermal decomposition of triacylisocyanurates. Zhurnal Org Farm khimii 5:76–77
    29.Yesypenko OA, Boyko VI, Klyachina MA et al (2012) Monosodium salt of p-tert-butylcalix[4]arene in the reactions with electrophilic reagents. Synthesis and structure of monofunctionalized calix[4]arenes. J Incl Phenom Macrocycl Chem 74:265–275. doi:10.​1007/​s10847-012-0109-9 CrossRef
    30.Furche F, Ahlrichs R, Hättig C et al (2014) Turbomole. Wiley Interdiscip Rev Comput Mol Sci 4:91–100. doi:10.​1002/​wcms.​1162 CrossRef
    31.Dunlap BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of Xα theory. J Chem Phys 71:3396–3402. doi:10.​1063/​1.​438728 CrossRef
    32.Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518. doi:10.​1016/​0009-2614(93)89151-7 CrossRef
    33.Eichkorn K, Treutler O, Öhm H et al (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem Phys Lett 240:283–290. doi:10.​1016/​0009-2614(95)00621-A CrossRef
    34.Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem 5:741–758. doi:10.​1039/​b615319b CrossRef
    35.Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. doi:10.​1063/​1.​467146 CrossRef
    36.Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805. doi:10.​1039/​p29930000799 CrossRef
    37.Schäfer A, Klamt A, Sattel D et al (2000) COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2:2187–2193. doi:10.​1039/​b000184h CrossRef
    38.Klamt A (2011) The COSMO and COSMO-RS solvation models. Wiley Interdiscip Rev Comput Mol Sci 1:699–709. doi:10.​1002/​wcms.​56 CrossRef
    39.Jmol: an open-source Java viewer for chemical structures in 3D. See http://​jmol.​sourceforge.​net/​ for more detail
    40.Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.​1107/​S010876730704393​0 CrossRef
    41.Boyko VI, Yakovenko AV, Matvieiev YI et al (2008) Regio- and stereoselective 1(S)-camphorsulfonylation of monoalkoxycalix[4]arenes. Tetrahedron 64:7567–7573. doi:10.​1016/​j.​tet.​2008.​05.​106 CrossRef
    42.Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford
    43.Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173. doi:10.​1016/​S0009-2614(98)00036-0 CrossRef
    44.Boyko VI, Shivanyuk A, Pyrozhenko VV et al (2006) A stereoselective synthesis of asymmetrically substituted calix[4]arenecarbamates. Tetrahedron Lett 47:7775–7778. doi:10.​1016/​j.​tetlet.​2006.​08.​095 CrossRef
  • 作者单位:V. I. Boyko (1)
    A. B. Rozhenko (1)
    V. V. Pirozhenko (1)
    S. V. Shishkina (2) (3)
    O. V. Shishkin (2) (3)
    V. I. Kalchenko (1)

    1. Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Str. 5, Kiev, 02660, Ukraine
    2. STC “Institute for Single Crystal”, National Academy of Sciences of Ukraine, Lenin Ave. 60, Kharkiv, 61001, Ukraine
    3. V.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61077, Ukraine
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-9001
文摘
The facile method of generating internal chirality into the calixarene with two hydroxy groups at the lower rim via an attached chiral substituent has been proposed. The reaction with acylisocyanates, catalyzed by a small amount of triethylamine, proceeds forming predominantly one of the two possible calixarene carbamates. The best diastereomeric excess (60 %) has been achieved in the reaction of trichloroacyl isocyanates with 1,3-hydroxycalixarene substituted with the chiral phenylethyl amide moiety. The individual diastereomers of trichloroacetyl-carbamoylcalix[4]arenas were isolated by crystallization, and their absolute configuration was determined by X-ray diffraction study. The most favored conformations predicted for 1,3-dihydroxy calixarene structures by quantum chemical calculations possess very similar stability. However, the triethylamine molecule preferably connects to the one hydroxyl group of the two available ones, providing the most favorable adduct, which predominantly participates in the reaction with acylisocyanates. This gives rise to the observed diastereomeric excess. The subsequent treatment of the formed carbamoyl with n-propyl bromide in presence of NaH and hydrolysis of the product of alkylation easily provide a persistent internally chiral calixarene. Keywords Inherent chirality Calixarenes X-ray structure determination Diastereomeric excess DFT

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700