用户名: 密码: 验证码:
Evolution of complete proteomes: guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture
详细信息    查看全文
  • 作者:Wanping Chen (11)
    Yanchun Shao (10) (11)
    Fusheng Chen (10) (11) (9)
  • 关键词:Proteome ; Evolution ; GC pressure ; Phylogeny ; Environmental influence
  • 刊名:BMC Evolutionary Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:1,346 KB
  • 参考文献:1. Casto AM, Amid C: Beyond the Genome: genomics research ten years after the human genome sequence. / Genome Biol 2010, 11:309. CrossRef
    2. Yao T: Bioinformatics for the genomic sciences and towards systems biology. Japanese activities in the post-genome era. / Prog Biophys Mol Biol 2002, 80:23鈥?2. CrossRef
    3. Tekaia F, Yeramian E, Dujon B: Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. / Gene 2002, 297:51鈥?0. CrossRef
    4. Tekaia F, Yeramian E: Evolution of proteomes: fundamental signatures and global trends in amino acid compositions. / BMC Genomics 2006, 7:307. CrossRef
    5. Smole Z, Nikolic N, Supek F, Smuc T, Sbalzarini IF, Krisko A: Proteome sequence features carry signatures of the environmental niche of prokaryotes. / BMC Evol Biol 2011, 11:26. CrossRef
    6. Schmidt A, Rzanny M, Hagen M, Schutze E, Kothe E: GC content-independent amino acid patterns in Bacteria and Archaea. / J Basic Microbiol 2012, 52:195鈥?05. CrossRef
    7. Vieira-Silva S, Rocha EP: An assessment of the impacts of molecular oxygen on the evolution of proteomes. / Mol Biol Evol 2008, 25:1931鈥?942. CrossRef
    8. Sueoka N: Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein. / Proc Natl Acad Sci USA 1961, 47:1141鈥?149. CrossRef
    9. Lobry JR: Influence of genomic G鈥?鈥塁 content on average amino-acid composition of proteins from 59 bacterial species. / Gene 1997, 205:309鈥?16. CrossRef
    10. Chen W, Xie T, Shao Y, Chen F: Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition. / Gene 2012, 497:116鈥?24. CrossRef
    11. Bharanidharan D, Bhargavi GR, Uthanumallian K, Gautham N: Correlations between nucleotide frequencies and amino acid composition in 115 bacterial species. / Biochem Bioph Res Co 2004, 315:1097鈥?103. CrossRef
    12. Lightfield J, Fram NR, Ely B: Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage. / PLoS One 2011, 6:e17677. CrossRef
    13. Singer GAC, Hickey DA: Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. / Mol Biol Evol 2000, 17:1581鈥?588. CrossRef
    14. Knight RD, Freeland SJ, Landweber LF: A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. / Genome Biol 2001, 2:0010.
    15. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T: Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens . / Genome Res 2003, 13:1572鈥?579. CrossRef
    16. Pe'er I, Felder CE, Man O, Silman I, Sussman JL, Beckmann JS: Proteomic signatures: Amino acid and oligopeptide compositions differentiate among phyla. / Proteins 2004, 54:20鈥?0. CrossRef
    17. Dumontier M, Michalickova K, Hogue CWV: Species-specific protein sequence and fold optimizations. / BMC Bioinforma 2002, 3:39. CrossRef
    18. Nikolic N, Smole Z, Krisko A: Proteomic properties reveal phyloecological clusters of Archaea. / PLoS One 2012, 7:e48231. CrossRef
    19. Hickey DA, Singer GAC: Genomic and proteomic adaptations to growth at high temperature. / Genome Biol 2004, 5:117. CrossRef
    20. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K: Unique amino acid composition of proteins in halophilic bacteria. / J Mol Biol 2003, 327:347鈥?57. CrossRef
    21. Bardavid RE, Oren A: The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. / Extremophiles 2012, 16:567鈥?72. CrossRef
    22. Brocchieri L: Environmental signatures in proteome properties. / Proc Natl Acad Sci U S A 2004, 101:8257鈥?258. CrossRef
    23. Singer GAC, Hickey DA: Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. / Gene 2003, 317:39鈥?7. CrossRef
    24. Puigbo P, Pasamontes A, Garcia-Vallve S: Gaining and losing the thermophilic adaptation in prokaryotes. / Trends Genet 2008, 24:10鈥?4. CrossRef
    25. Zeldovich KB, Berezovsky IN, Shakhnovich EI: Protein and DNA sequence determinants of thermophilic adaptation. / PLoS Comput Biol 2007, 3:e5. CrossRef
    26. Wang GZ, Lercher MJ: Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. / BMC Evol Biol 2010, 10:263. CrossRef
    27. Jobson RW, Qiu YL: Amino acid compositional shifts during streptophyte transitions to terrestrial habitats. / J Mol Evol 2011, 72:204鈥?14. CrossRef
    28. Hanai R, Wada A: The effects of guanine and cytosine variation on dinucleotide frequency and amino acid composition in the human genome. / J Mol Evol 1988, 27:321鈥?25. CrossRef
    29. Karlin S, Burge C: Dinucleotide relative abundance extremes - a genomic signature. / Trends Genet 1995, 11:283鈥?90. CrossRef
    30. De Amicis F, Marchetti S: Intercodon dinucleotides affect codon choice in plant genes. / Nucleic Acids Res 2000, 28:3339鈥?345. CrossRef
    31. Gentles AJ, Karlin S: Genome-scale compositional comparisons in eukaryotes. / Genome Res 2001, 11:540鈥?46. CrossRef
    32. Alves R, Savageau MA: Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes. / Mol Microbiol 2005, 56:1017鈥?034. CrossRef
    33. Bragg JG, Thomas D, Baudouin-Cornu P: Variation among species in proteomic sulphur content is related to environmental conditions. / Proc R Soc B 2006, 273:1293鈥?300. CrossRef
    34. Akashi H, Gojobori T: Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . / Proc Natl Acad Sci USA 2002, 99:3695鈥?700. CrossRef
    35. Jun T, Robert N, Erika W, Erin M, Brad M, Grant H, Tygue A, Kelly H, Rachel H, Manuel R, Mike W: The frequencies of amino acids encoded by genomes that utilize standard and nonstandard genetic codes. / BIOS 2010, 81:22鈥?1. CrossRef
    36. Clancy S, Brown W: Translation: DNA to mRNA to protein. / Nat Educ 2008, 1:1.
    37. Wu HL, Bagby S, van den Elsen JMH: Evolution of the genetic triplet code via two types of doublet codons. / J Mol Evol 2005, 61:54鈥?4. CrossRef
    38. Tlusty T: A colorful origin for the genetic code: Information theory, statistical mechanics and the emergence of molecular codes. / Phys Life Rev 2010, 7:362鈥?76. CrossRef
    39. Gilis D, Massar S, Cerf NJ, Rooman M: Optimality of the genetic code with respect to protein stability and amino-acid frequencies. / Genome Biol 2001, 2:0049. CrossRef
    40. Galtier N, Lobry JR: Relationships between genomic G鈥?鈥塁 content, RNA secondary structures, and optimal growth temperature in prokaryotes. / J Mol Evol 1997, 44:632鈥?36. CrossRef
    41. Hurst LD, Merchant AR: High guanine鈥揷ytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. / Proc R Soc B 2001, 268:493鈥?97. CrossRef
    42. Smith DR, Chapman MR: Economical evolution: Microbes reduce the synthetic cost of extracellular proteins. / mBio 2010, 1:e00131鈥?0.
    43. Heizer EM, Raiford DW, Raymer ML, Doom TE, Miller RV, Krane DE: Amino acid cost and codon-usage biases in 6 prokaryotic genomes: A whole-genome analysis. / Mol Biol Evol 2006, 23:1670鈥?680. CrossRef
    44. Raiford DW, Heizer EM, Miller RV, Doom TE, Raymer ML, Krane DE: Metabolic and translational efficiency in microbial organisms. / J Mol Evol 2012, 74:206鈥?16. CrossRef
    45. Raiford DW, Heizer EM, Miller RV, Akashi H, Raymer ML, Krane DE: Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae ? / J Mol Evol 2008, 67:621鈥?30. CrossRef
    46. Barton MD, Delneri D, Oliver SG, Rattray M, Bergman CM: Evolutionary systems biology of amino acid biosynthetic cost in yeast. / PLoS One 2010, 5:e11935. CrossRef
    47. Seligmann H: Cost-minimization of amino acid usage. / J Mol Evol 2003, 56:151鈥?61. CrossRef
    48. Wang J, Zhu S, Xu C: / Amino acids. 3rd edition. Edited by: Xu C. Beijing: Higher Education Press; 2002:124鈥?27. [ / Biochemistry, Volume 1]
    49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Biol Evol 2011, 28:2731鈥?739. CrossRef
    50. Letunic I, Bork P: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. / Nucleic Acids Res 2011, 39:W475-W478. CrossRef
  • 作者单位:Wanping Chen (11)
    Yanchun Shao (10) (11)
    Fusheng Chen (10) (11) (9)

    11. College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
    10. National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
    9. Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
  • ISSN:1471-2148
文摘
Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700