用户名: 密码: 验证码:
A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer
详细信息    查看全文
  • 作者:Ming-jun Ma ; Zhong-he Jin ; Hui-jie Zhu
  • 关键词:Bias drift ; Closed ; loop MEMS accelerometer ; Modulated feedback approach ; Temperature compensation ; TN43
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:16
  • 期:6
  • 页码:497-510
  • 全文大小:1,469 KB
  • 参考文献:Aaltonen, L., Halonen, K., 2009. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sens. Actuat. A, 154(1):46-6. [doi:10.1016/j.sna.2009.07.011]CrossRef
    Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE, 54(2):221-30. [doi:10.1109/PROC.1966.4634]CrossRef
    Amini, B.V., Abdolvand, R., Ayazi, F., 2006. A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer. IEEE J. Sol.-State Circ., 41(12):2983-991. [doi:10.1109/JSSC.2006.884864]CrossRef
    Chae, J., Kulah, H., Najafi, K., 2005. A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer. J. Micromech. Microeng., 15(2):336-45. [doi:10.1088/0960-1317/15/2/013]CrossRef
    Cui, J., Guo, Z.Y., Yang, Z.C., et al., 2011. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller. J. Micromech. Microeng., 21(9):1-1. [doi:10.1088/0960-1317/21/9/095020]CrossRef
    Dong, Y., Kraft, M., Redman-White, W., 2007. Higher order noise-shaping filters for high-performance micromachined accelerometers. IEEE Trans. Instrum. Meas., 56(5):1666-674. [doi:10.1109/TIM.2007.904477]CrossRef
    Dong, Y., Zwahlen, P., Nguyen, A.M., et al., 2010. High performance inertial navigation grade sigma-delta MEMS accelerometer. Proc. IEEE/ION Position Location and Navigation Symp., p.32-6. [doi:10.1109/PLANS.2010.5507135]CrossRef
    Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of OP-AMP imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE, 84(11):1584-614. [doi:10.1109/5.542410]CrossRef
    IEEE, 1998. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997. [doi:10.1109/IEEESTD.1998.86153]
    Josselin, V., Touboul, P., Kielbasa, R., 1999. Capacitive detection scheme for space accelerometer applications. Sens. Actuat. A, 78(2-):92-8. [doi:10.1016/S0924-4247(99)00227-7]CrossRef
    Kajita, T., Moon, U.K., Temes, G.C., 2002. A two-chip interface for a MEMS accelerometer. IEEE Trans. Instrum. Meas., 51(4):853-58. [doi:10.1109/TIM.2002.803508]CrossRef
    Karabalin, R.B., Villanueva, L.G., Matheny, M.H., et al., 2012. Stress-induced variation in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett., 108:236101. [doi:10.1103/PhysRevLett.108.236101]CrossRef
    Ko, H., Cho, D.D., 2010. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuat. A, 158(1):72-3. [doi:10.1016/j.sna.2009.12.017]CrossRef
    Lakdawala, H., Fedder, G.K., 2004. Temperature stabilization of CMOS capacitive accelerometers. J. Micromech. Microeng., 14(4):559-66. [doi:10.1088/0960-1317/14/4/017]CrossRef
    Lee, J., Rhim, J., 2012. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J. Micromech. Microeng., 22(9):1-1. [doi:10.1088/0960-1317/22/9/095016]MATH
    Lee, K., Takao, H., Sawada, K., et al., 2003. A three-axis accelerometer for high temperatures with low temperature dependence using a constant temperature control of SOI piezoresistors. Proc. 16th IEEE Annual Int. Conf. on Micro Electro Mechanical Systems, p.478-81. [doi:10.1109/MEMSYS.2003.1189790]
    Li, M., Horsley, D.A., 2014. Offset suppression in a micromachined Lorentz force magnetic sensor by current chopping. J. Microelectromech. Syst., 23(6):1477-484. [doi:10.1109/JMEMS.2014.2316452]CrossRef
    Liu, D., Chi, X., Cui, J., et al., 2008. Research on temperature dependent characteristics and compensation methods for digital gyroscope. Proc. 3rd Int. Conf. on Sensing Technology, p.273-77. [doi:10.1109/ICSENST.2008.4757112]
    Petkov, V.P., Boser, B.E., 2004. Capacitive interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Enabling Technology for MEMS and Nanodevices. Wiley-VCH Weinheim, p.49-2. [doi:10.1002/9783527616701.ch3]CrossRef
    Prikhodko, I.P., Trusov, A.A., Shkel, A.M., 2013. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuat. A, 201:517-24. [doi:10.1016/j.sna.2012.12.024]CrossRef
    Samarao, A.K., Ayazi, F., 2012. Temperature compensation of silicon resonators via degenerate doping. IEEE Trans. Electron Dev., 59(1):87-3. [doi:10.1109/TED.2011.2172613]CrossRef
    Schreier, R., 1993. An empirical study of high-order singlebit delta-sigma modulators. IEEE Trans. Circ. Syst. II, 40(8):461-66. [doi:10.1109/82.242348]CrossRef
    Willemenot, E., Touboul, P., 2000. On-ground investigation of space accelerometer noise with an electrostatic torsion pendulum. Rev. Sci. Instrum., 71(1):302-09. [doi:10.1063/1.1150197]CrossRef
    Wongkomet, N., Boser, B.E., 1998. Correlated double sampling in capacitive position sensing circuits for micromachined applications. Proc. IEEE Asia-Pacif
  • 作者单位:Ming-jun Ma (1)
    Zhong-he Jin (1)
    Hui-jie Zhu (1)

    1. Micro-Satellite Research Center, Zhejiang University, Hangzhou, 310027, China
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the temperature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot address the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers. Key words Bias drift Closed-loop MEMS accelerometer Modulated feedback approach Temperature compensation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700