用户名: 密码: 验证码:
Homology modeling and function of trehalose synthase from Pseudomonas putida P06
详细信息    查看全文
  • 作者:Jing Su (1)
    Tengfei Wang (1)
    Chunling Ma (1)
    Zhongkui Li (1)
    Zhenzhen Li (1)
    Ruiming Wang (1)
  • 关键词:Catalytic mechanism ; Enzyme–substrate interactions ; Homology modeling ; Pseudomonas putida P06 ; Trehalose ; Trehalose synthase
  • 刊名:Biotechnology Letters
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:36
  • 期:5
  • 页码:1009-1013
  • 全文大小:703 KB
  • 参考文献:1. Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from / Picrophilus torridus in / Escherichia coli. J Agric Food Chem 54:7098-104 CrossRef
    2. Elbein AD, Pan YT, Pastuazak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17-7 CrossRef
    3. Giaver HM, Styrvold OB, Kaasen I, Stram AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in / Escherichia coli. J Bacteriol 170:2841-849
    4. Janecek S, Svensson B, MacGregor EA (2003) Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem 270:635-45 CrossRef
    5. Jing S, Chunling M, Tengfei W, Piwu L, Ruiming W (2013) Clone and expression of high yield recombinant trehalose synthase in / Bacillus subtilis. Lecture Notes in Eng 249:35-2
    6. Lee H, Kim J, Shim K, Kim J, Park C, Park K (2005) Quaternary structure and enzymatic properties of cyclomaltodextrinase from alkalophilic / Bacillus sp. I-5. Biologia 60:73-7
    7. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem 19:1639-662 CrossRef
    8. Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M (1996) Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium / Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:263-66 CrossRef
    9. Nishimoto T, Nakano M, Ikegami S, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1995) Existence of a novel enzyme converting maltose into trehalose. Biosci Biotechnol Biochem 59:2189-190 CrossRef
    10. Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Purification and properties of a novel enzyme, trehalose synthase, from / Pimelobacter sp. R48. Biosci Biotechnol Biochem 60:640-44 CrossRef
    11. Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of / Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271:4259-269 CrossRef
    12. Roy A, Alper Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725-38 CrossRef
    13. Sami C, Nham N, Adeleke A, Ran Zh, Yuan TP, Stephen G, Gary DB (2013) The structure of the / Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology 23:1075-083 CrossRef
    14. Schiraldi C, Lernia ID, Rosa MD (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420-25 CrossRef
    15. Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42-9
    16. Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, Withers SGG (2011) Mechanistic analysis of trehalose synthase from / Mycobacterium smegmatis. J Biol Chem 41:35601-5609 CrossRef
  • 作者单位:Jing Su (1)
    Tengfei Wang (1)
    Chunling Ma (1)
    Zhongkui Li (1)
    Zhenzhen Li (1)
    Ruiming Wang (1)

    1. School of Food & Bioengineering, Qilu University of Technology, Jinan, 250300, China
  • ISSN:1573-6776
文摘
Trehalose is a non-reducing disaccharide that has wide applications in the food industry and pharmaceutical manufacturing. Trehalose synthase (TreS) from Pseudomonas putida P06 catalyzes the reversible interconversion of maltose and trehalose and may have applications in the food industry. However, the catalytic mechanism of TreS is not well understood. Here, we investigated the structural characteristics of this enzyme by homology modeling. The highly conserved Asp294 residue was identified to be critical for catalytic activity. In addition, flexible docking studies of the enzyme–substrate system were performed to predict the interactions between TreS and its substrate, maltose. Amino acids that interact extensively with the substrate and stabilize the substrate in an orientation suitable for enzyme catalysis were identified. The importance of these residues for catalytic activity was confirmed by the biochemical characterization of the relevant mutants generated by site-directed mutagenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700