用户名: 密码: 验证码:
The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions
详细信息   在线全文   PDF全文下载
摘要

The Indian Peak–Caliente caldera complex and its surrounding ignimbrite field were a major focus of explosive silicic activity in the eastern sector of the subduction-related southern Great Basin ignimbrite province during the middle Cenozoic (36–18 Ma) ignimbrite flareup. Caldera-forming activity migrated southward through time in response to rollback of the subducting lithosphere. Nine partly exposed, separate to partly overlapping source calderas and an equal number of concealed sources compose the Indian Peak–Caliente caldera complex. Calderas have diameters to as much as 60 km and are filled with as much as 5000 m of intracaldera tuff and wall-collapse breccias.

More than 50 ignimbrite cooling units, including 22 of regional (>100 km3) extent, are distinguished on the basis of stratigraphic position, chemical and modal composition, 40Ar/39Ar age, and paleomagnetic direction. The most voluminous ash flows spread as far as 150 km from the caldera complex across a high plateau of limited relief—the Great Basin altiplano, which was created by late Paleozoic through Mesozoic orogenic deformation and crustal thickening. The resulting ignimbrite field covers a present area of ∼60,000 km2 in east-central Nevada and southwestern Utah. Before post-volcanic extension, ignimbrites had an estimated aggregate volume of ∼33,000 km3. At least seven of the largest cooling units were produced by super-eruptions of more than 1000 km3. The largest, at 5900 km3, originally covered an area of 32,000 km2 to outflow depths of hundreds of meters. Outflow ignimbrite sequences comprise as many as several cooling units from different sources with an aggregate thickness locally reaching a kilometer; sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances, thus manifesting a lack of synvolcanic crustal extension. Fallout ash in the mid-continent is associated with two of the super-eruptions.

Ignimbrites are mostly calc-alkalic and high-K, a reflection of the unusually thick crust in which the magmas were created. They have a typical arc chemical signature and define a spectrum of compositions that ranges from high-silica (78 wt%) rhyolite to andesite (61 wt% silica). Rhyolite magmas were erupted in relatively small volumes more or less throughout the history of activity, but in a much larger volume after 24 Ma in the southern part of the caldera complex, creating ∼10,000 km3 of ignimbrite.

The field has some rhyolite ignimbrites, the largest of which are in the south and were emplaced after 24 Ma. But the most distinctive attributes of the Indian Peak–Caliente field are two distinct classes of ignimbrite:

1. Super-eruptive monotonous intermediates. More or less uniform and unzoned deposits of dacitic ignimbrite that are phenocryst rich (to as much as ∼50%) with plagioclase > biotite ≈ quartz ≈ hornblende > Fe-Ti oxides ± sanidine, pyroxene, and titanite; apatite and zircon are ubiquitous accessory phases. These tuffs were deposited at 31.13, 30.06, and 29.20 Ma in volumes of 2000, 5900, and 4400 km3, respectively, from overlapping, multicyclic calderas. A unique, and possibly kindred, phenocryst-rich latite-andesite ignimbrite with an outflow volume of 1100 km3 was erupted at 22.56 Ma from a concealed source caldera to the south.

2. Trachydacitic Isom-type tuffs. Also relatively uniform but phenocryst poor (<20%) with plagioclase >> clinopyroxene ≈ orthopyroxene ≈ Fe-Ti oxides >> apatite. These alkali-calcic tuffs are enriched in TiO2, K2O, P2O5, Ba, Nb, and Zr and depleted in CaO, MgO, Ni, and Cr, and have an arc chemical signature. Magmas were erupted from a concealed source immediately after and just to the southeast of the multicyclic monotonous intermediates. Most of their aggregate outflow volume of 1800 km3 was erupted from 27.90 to 27.25 Ma. Nothing like this couplet of distinct ignimbrites, in such volumes, have been documented in other middle Cenozoic volcanic fields in the southwestern U.S. where the ignimbrite flareup is manifest.

Magmas were created in unusually thick crust (as thick as 70 km) where large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. Dacite and some rhyolite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that were a couple of log units more oxidized than the quartz-fayalite-magnetite (QFM) oxygen buffer at depths of ∼8–12 km. In contrast to these “main-trend” magmas, trachydacitic Isom-type magmas were derived from drier and hotter (∼950 °C) magmas originating deeper in the crust (to as deep as 30 km) by fractionation processes in andesitic differentiates of the mantle magma. “Off-trend” rhyolitic magmas that are both younger and older than the Isom type but possessed some of their same chemical characteristics possibly reflect an ancestry involving Isom-type magmas as well as main-trend rhyolitic magmas.

Andesitic lavas extruded during the flareup but mostly after 25 Ma constitute a roughly estimated 12% of the volume of silicic ignimbrite, in contrast to major volcanic fields to the east, e.g., the Southern Rocky Mountain field, where the volume of intermediate-composition lavas exceeds that of silicic ignimbrites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700