用户名: 密码: 验证码:
3D wavefield extrapolation with
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Linong Liu ; Jianfeng Zhang
  • Publisher:Society of Exploration Geophysicists
  • Date:2006-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.2197493
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:71
  • issue:3
  • firstpage:T95
  • section:SEISMIC MODELING AND WAVE PROPAGATION
摘要

A one-way propagator is proposed for more accurately modeling wide-angle wavefields in the presence of severe lateral variations of the velocity. The method adds a higher-order correction to improve the split-step Fourier method by directly designing a cascaded operator that matches the exact phase-shift operator of a varying velocity. Using an optimization scheme, the coefficients in the cascaded operator are determined according to the local velocity distribution and the prescribed angular range of wavefield propagation. The proposed algorithm is implemented alternately in spatial and wavenumber domains using fast Fourier transforms, as in the split-step Fourier and generalized-screen methods. This algorithm can achieve higher accuracy than the generalized-screen method for wide-angle wavefields, although the same numerical scheme is used with comparable computational cost. No extra error arises for the proposed algorithm when used for 3D wave propagation, in contrast to methods that introduce an implicit finite–difference higher-order correction to the split-step Fourier method, such as the Fourier finite difference (FFD) and wide-angle screen methods. A detailed comparison of the proposed one-way propagator with the split-step Fourier, generalized-screen, and FFD methods is presented. The 2D Marmousi and 3D SEG/EAEG overthrust data sets are used to test the prestack depth-migration schemes developed based on the proposed one-way propagators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700