用户名: 密码: 验证码:
Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans
详细信息   在线全文   PDF全文下载
  • journal_title:Geology
  • Contributor:C.H. House ; D.Z. Oehler ; K. Sugitani ; K. Mimura
  • Publisher:Geological Society of America
  • Date:2013-06-01
  • Format:text/html
  • Language:en
  • Identifier:10.1130/G34055.1
  • journal_abbrev:Geology
  • issn:0091-7613
  • volume:41
  • issue:6
  • firstpage:651
  • section:Articles
摘要

The ca. 3 Ga Farrel Quartzite (FQ, Western Australia) contains possible organic microfossils of unusual spindle-like morphology that are surprisingly large and complex, preserved along with spheroids. The unusual nature of the possible fossils, coupled with their antiquity, makes their interpretation as biogenic difficult and debatable. Here, we report 32 in situ carbon isotopic analyses of 15 individual FQ specimens. The spheroids and the spindle-like forms have a weighted mean δ13C value of –37‰, an isotopic composition that is quite consistent with a biogenic origin. Both the spheroids and the spindle-like structures are isotopically distinct from the background organic matter in the same thin section (weighted mean δ13C value of –33‰), which shows that the preserved microstructures are not pseudofossils formed from physical reprocessing of the bulk sedimentary organic material. When considered along with published morphological and chemical studies, these results indicate that the FQ microstructures are bona fide microfossils, and support the interpretation that the spindles were planktonic. Our results also provide metabolic constraints that imply most of these preserved microorganisms were autotrophic. The existence of similar spindles in the ca. 3.4 Ga Strelley Pool Formation of Australia and the ca. 3.4 Ga Onverwacht Group of South Africa suggests that the spindle-containing microbiota may be one of the oldest, morphologically preserved examples of life. If this is the case, then the FQ structures represent the remains of a cosmopolitan biological experiment that appears to have lasted for several hundred million years, starting in the Paleoarchean.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700