用户名: 密码: 验证码:
Mapping formation radial shear-wave velocity variation by a c
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Xiao-Ming Tang ; Douglas J. Patterson
  • Publisher:Society of Exploration Geophysicists
  • Date:2010-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.3502664
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:75
  • issue:6
  • firstpage:E183
  • section:BOREHOLE GEOPHYSICS AND ROCK PROPERTIES
摘要

We have developed a novel constrained inversion method for estimating a radial shear-wave velocity profile away from the wellbore using dipole acoustic logging data and have analyzed the effect of the radial velocity changes on dipole-flexural-wave dispersion characteristics. The inversion of the dispersion data to estimate the radial changes is inherently a nonunique problem because changing the degree of variation or the radial size of the variation zone can produce similar wave-dispersion characteristics. Nonuniqueness can be solved by developing a constrained inversion method. This is done by constraining the high-frequency portion of the model dispersion curve with another curve calculated using the near-borehole velocity. The constraint condition is based on the physical principle that a high-frequency dipole wave has a shallow penetration depth and is therefore sensitive to the near-borehole shear-wave velocity. We have validated the result of the constrained inversion with synthetic data testing. Combining the new inversion method with four-component crossed-dipole anisotropy processing obtains shear radial profiles in fast and slow shear polarization directions. In a sandstone formation, the fast and slow shear-wave profiles show substantial differences caused by the near-borehole stress field, demonstrating the ability of the technique to obtain radial and azimuthal geomechanical property changes near the wellbore.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700