用户名: 密码: 验证码:
Atmospheric pCO2 and depositional environment from stable-isotope geochemis
详细信息   在线全文   PDF全文下载
摘要

Abstract: Nodular soil carbonates (calcretes) are present in overbank facies of Lower Cretaceous, non-marine Wealden Beds (Wessex Formation) of southern England. Field evidence suggests that these calcretes formed mostly under semi-arid Mediterranean-type climatic conditions. Typical calcrete fabrics, identified petrographically, include floating detrital grains, corroded grain margins and circumgranular cracks defining peds. Localized alteration of primary micrites is mainly associated with large cracks where early non-ferroan diagenetic cementation and neomorphism was focused. Diagenetic ferroan calcites occur as void fills and yield relatively light carbon-isotope and oxygen-isotope compositions (δ13C= −15.0‰; δ18O= –6.3‰) compared to well-preserved micrite (δ13C= –10.2‰; δ18O= –4.0‰). Precise definition of δ13C values for well-preserved micrites allow estimation of partial pressure of atmospheric CO2 (pCO2) for the early Barremian of 560 ppmV using a published diffusion-reaction model. The data suggest that atmospheric CO2 was low during the mid-Early Cretaceous before rising to a previously defined mid-Cretaceous high. Data from calcretes in the Weald Clay highlight the need for selection of appropriate material and careful evaluation before pCO2 calculations are attempted. The Weald Clay samples come from marshy palaeoenvironments where ingress of atmospheric CO2 into the soil-zone was either reduced or prevented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700