用户名: 密码: 验证码:
Slope-instability processes caused by salt movements in a complex d
详细信息   在线全文   PDF全文下载
  • journal_title:AAPG Bulletin
  • Contributor:Efthymios K. Tripsanas ; William R. Bryant ; Brett A. Phaneuf
  • Publisher:American Association of Petroleum Geologists (AAPG)
  • Date:2004-
  • Format:text/html
  • Language:en
  • Identifier:10.1306/01260403106
  • journal_abbrev:AAPG Bulletin
  • issn:0149-1423
  • volume:88
  • issue:6
  • firstpage:801
  • section:Articles
摘要

Halokinetic and slope-instability processes have sculpted numerous morphological features on the flanks of the intraslope basins in the Bryant Canyon area. High-resolution geophysical data and long sediment cores (as much as 20 m [66 ft] long) were used to define the time and spatial evolution of sediment failures and their relationship to halokinetic processes. Two episodes of increased salt-tectonic activity are defined: (1) The first acted at the beginning of interglacial oxygen isotope stage 5 as salt adjusted to the abandoned environments of the Bryant and Eastern Canyon systems, and (2) the second occurred during the last glacial period and is characterized by the seaward propagation of salt masses. Three types of slopes are recognized in the intraslope basins: (1) highly inclined slopes with low-relief morphologic features resulting from shallow, translational slump complexes, (2) highly inclined slopes with high-relief morphologic features resulting from deep, rotational slump complexes, and (3) highly inclined slopes dissected by high-relief canyonlike landslide troughs resulting from channelized rotational slumps. The first two slope types occur mainly on the northern flanks of the basins, whereas the third type occurs on the southern flanks. We propose that the slump complexes on types 1 and 2 slopes were triggered by the oversteepening of the flanks by the seaward mobilization of underlying salt masses. The channelized rotational slumps on type 3 slopes are interpreted to result from the development of salt diapir bulges that lead to locally increased gradients on the basin flanks. Most of the sediment failures have been transformed into debris flows and led to the most recent phase of infilling of the basin floors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700