用户名: 密码: 验证码:
Productivity evaluation of hydraulical
详细信息   cienceworld.org/content/12/3/275.full">在线全文   cienceworld.org/content/12/3/275.full.pdf">PDF全文下载
  • journal_title:Petroleum Geoscience
  • Contributor:Shi-Yi Zheng ; Murat Zhiyenkulov ; TongChun Yi
  • Publisher:Geological Society of London
  • Date:2006-
  • Format:text/html
  • Language:en
  • Identifier:10.1144/1354-079304-644
  • journal_abbrev:Petroleum Geoscience
  • issn:1354-0793
  • volume:12
  • issue:3
  • firstpage:275
  • section:Original Article
摘要

This study describes an application of a compositional single well simulator to analyse well tests in gas-condensate reservoirs. An important aspect of this application for gas-condensate well tests is accurate fluid property prediction during the multi-phase flow regime, which occurs in the near-well region. The simulator can also be used to understand the impact of liquid drop-out and fracture flow on well productivity.

Hydraulic fracturing improves the economics of wells drilled in tight reservoirs. However, the operation involves a significant amount of expenditure. In recent years this technique has also been used to stimulate gas-condensate reservoirs by creating a flow conduit through the condensate banking near the well. Thus, it is crucial to keep a fracture as small as possible. In practice it has been proved that a short, wide fracture can provide much higher production than the traditionally pursued narrow, long fracture.

The workflow in this study contains compositional simulation of a single well in a tight gas-condensate reservoir, which is used to generate transient pressure data for well test analysis and interpretation to predict multi-phase flow behaviour, and to analyse productivity impairment due to condensation. Simulation models were then further modified to study the impact of various hydraulic fractures on the well productivity index (PI), which is defined as the ratio of production rate (constant) divided by the pressure drop across the reservoir. PIs for fractured cases are compared with respect to the non-fractured base case. Streamline simulation of the fractured gas-condensate reservoir was also included in the study to allow visualization of the flow profile in and around the hydraulic fracture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700