用户名: 密码: 验证码:
煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and development of 3D large-scale physical simulation experimental system for coal and gas co-extraction and its application
  • 作者:李树刚 ; 魏宗勇 ; 林海飞 ; 赵鹏翔 ; 肖鹏 ; 郝昱宇
  • 英文作者:LI Shugang;WEI Zongyong;LIN Haifei;ZHAO Pengxiang;XIAO Peng;HAO Yuyu;College of Safety Science and Engineering,Xi'an University of Science and Technology;Engineering Training Centre,Xi'an University of Science and Technology;
  • 关键词:大尺度 ; 煤与瓦斯共采 ; 裂隙演化 ; 瓦斯运移 ; 三维模拟实验
  • 英文关键词:large scale;;coal and gas co-extraction;;fracture evolution;;gas migration;;3D simulation exper-iment
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:西安科技大学安全科学与工程学院;西安科技大学工程训练中心;
  • 出版日期:2019-01-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.292
  • 基金:国家自然科学基金科学仪器专项资助项目(51327007);国家自然科学基金重点资助项目(51734007);国家自然科学基金青年基金资助项目(51704228)
  • 语种:中文;
  • 页:MTXB201901023
  • 页数:10
  • CN:01
  • ISSN:11-2190/TD
  • 分类号:243-252
摘要
为进一步解决煤与瓦斯共采模型实验研究手段不足的问题,自主研制了一套煤与瓦斯共采三维大尺度物理模拟实验系统。该系统采用模块化设计,高度集成机、电、液、气于一体,主要由大尺度箱体(3. 0 m×2. 5 m×1. 8 m)与基座、自动液压开采、柔性加载、自动通风、瓦斯抽采、瓦斯注入以及综合数据采集与控制等7个子单元构成。按几何相似比1∶100计,加载单元可模拟最大采深2 105 m,开采单元可模拟采高0~12 m以及推进距离200 m;通风单元可模拟U型、U+L型、Y型等多种通风方式以及实现不同风量通风;抽采单元可模拟高位巷、高位钻孔、地面抽采等多种立体化抽采方式;瓦斯注入单元采用独立注入方式,实现不同瓦斯涌出量、不同位置的瓦斯涌出;综合数据采集与控制单元实现覆岩裂隙、矿山压力、瓦斯运移、瓦斯抽采等表征参数的采集以及对整个实验系统进行自动控制。该实验系统可进行工作面煤层开采、通风、瓦斯涌出与抽采等功能的模拟,实现煤层开采过程中覆岩裂隙演化、矿山压力分布、卸压瓦斯运移、瓦斯抽采等科学问题的一体同步研究。运用该系统对山西某矿302工作面开采过程进行模拟实验,得到了该矿条件下基本顶初次来压步距45 m,周期来压步距20 m,覆岩破坏在空间上呈椭圆抛物形态等覆岩破断与裂隙演化规律;工作面推进过程中应力峰值不断前移,应力集中系数2. 11~2. 63,超前工作面距离6~11 m等动态应力变化规律;在卸压瓦斯储集与分布规律方面,得到采空区后部76~120 m瓦斯浓度增加较快,120 m之后趋于稳定,采空区上部5~60 m裂隙带中瓦斯浓度逐渐增加,裂隙带最上层瓦斯浓度达到65%~68%。实验结果表明,该系统能够较好进行工作面煤与瓦斯共采全过程的模型实验研究。
        In order to overcome the shortcomings of experimental research methods for coal and gas co-extraction mod-el,a set of 3 D large-scale physical simulation experimental system for coal and gas co-extraction was developed. The system adopts modular design and highly integrates the machine,electricity,liquid and gas functions in one.It is mainly composed of seven sub-units including large-scale box body(3.0 m × 2.5 m × 1.8 m) and base,automatic hydraulic mining,flexible loading,automatic ventilation,gas extraction,gas injection,and integrated data acquisition and control.Following the geometric similarity ratio of 1 ∶ 100,the loading unit can simulate a maximum mining depth of 2105 m,the mining unit can simulate a mining height of 0-12 m and a face retreat distance of 200 m.The ventilation unit can simulate various ventilation modes such as U-type,U+L-type,Y-type with different flow quantities.The gas extraction unit can simulate gas drainage using different kinds of methods and a combination of them,such as a high-level gas drainage roadway,cross measure borehole and surface borehole. The gas injection unit adopts independent injection mode to realize gas emission at different positions and different gas emission rates.Comprehensive data acquisition and control unit is able to obtain the characterization parameters such as overburden fissures,strata pressure,gas migration,gas extraction and automatic control of the whole experimental system.Therefore,the experimental system can simulate coal seam mining process under different ventilation,gas emission and extraction conditions,making it possible to simultaneously study the overburden fracture evolution,mine pressure distribution,pressure relieved gas migration,gas extraction and other scientific issues during coal mining operation.The system was used to simulate the mining process at the 302 working face of a mine in Shanxi province,China.The laws of overburden breakage and fracture evolution were obtained,such as,the first weighting of the main roof was 45 m,the periodical weighting interval is 20 m,and the overburden failure shows a 3 D elliptical parabolic pattern.The dynamic variation of stress was obtained,indicating the peak stress moves forward continuously with the stress concentration coefficient variation between 2. 11 and 2. 63,and the peak stress occurrence at about 6-11 m ahead of the working face.In terms of the storage and distribution of pressure relieved gas,it was found that the gas concentration increased rapidly at 76-120 m behind face in the goaf and became stable beyond 120 m.The gas concentration increased gradually from the lower section to the higher section of the fractured zone which was about 5-60 m above the extraction level,reaching about 65%-68% at the top of fractured zone.The experimental results show that the system can well carry out the model experimental study of the whole process of coal and gas co-extraction in working face.
引文
[1]谢和平,鞠杨,高明忠,等.煤炭深部原位流态化开采的理论与技术体系[J].煤炭学报,2018,43(5):1210-1219.XIE Heiping,JU Yang,GAO Mingzhong,et al.Theories and technologies for in-situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society,2018,43(5):1210-1219.
    [2]袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1-6.
    [3]袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.YUAN Liang.Scientific conception of precision coal mining[J].Journal of China Coal Society,2017,42(1):1-7.
    [4]祁和刚.深部高应力巷道综合卸压技术研究与实践[J].采矿与安全工程学报,2016,33(6):1023-1029.QI Hegang. Research and practice on integrated pressure releasing technology in deep coal mine rock roadway under high stress[J].Journal of Mining&Safety Engineering,2016,33(6):1023-1029.
    [5]杨仁树,张宇菲,王梓旭,等.新型地质力学模型实验系统的研制与应用[J].煤炭学报,2018,43(2):398-404.YANG Renshu,ZHANG Yufe,WANG Zixu,et al. A newlybuilt geomechanical model test system and its application[J].Journal of China Coal Society,2018,43(2):398-404.
    [6]王炯,朱道勇,何满朝,等.切顶卸压自动成巷岩层运动规律物理模拟实验[J].岩石力学与工程学报,2018,371(11):2537-2547.WANG Jiong,ZHU Daoyong,HE Manchao,et al.Physical simulation experiment on the movement of rock strata upon automatic roadway forming by roof cutting and pressure releasing[J].Chinese Journal of Rock Mechanics and Engineering,2018,371(11):2537-2547.
    [7]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.ZHANG Qiangyong,LI Shucai,GUO Xiaohong,et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J].Rock and Soil Mechanics,2008,29(8):2126-2130.
    [8]李仲奎,卢达溶,中山元,等.三维模型实验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9):1430-1436.LI Zhongkui,LU Darong,NAKAYAMA H,et al.New technology and application of 3D model test for large scaled underground group caverns[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(9):1430-1436.
    [9]李仲奎,王爱民,王克忠,等.地下工程三维地质力学模型制作逆向控制技术研究与应用[J].岩石力学与工程学报,2009,28(9):1730-1734.LI Zhongkui,WANG Aimin,WANG Kezhong,et al.Study and application of inverse controlling technology for 3D geomechanical model construction of underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1730-1734.
    [10]胡耀青,赵阳升,杨栋,等.带压开采顶板破坏规律的三维相似模拟研宄[J].岩石力学与工程学报,2003,22(8):1239-1243.HU Yaoqing,ZHAO Yangsheng,YANG Dong,et al. Study of 3D simulation on breakage for coal floor in mining above aquifer[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1239-1243.
    [11]胡耀青,赵阳升,杨栋.三维固流藕合相似模拟理论与方法[J].辽宁工程技术大学学报,2007,26(2):204-206.HU Yaoqing,ZHAO Yangsheng,YANG Dong. Simulation theory&method of 3D solid-liquid coupling[J].Journal of Liaoning Technical University,2017,26(2):204-206.
    [12]伍永平,来兴平,曹建涛,等.多场耦合下急斜煤层开采三维物理模[J].西安科技大学学报,2009,29(6):647-653WU Yongping,LAI Xingping,CAO Jiantao,et al.3D physical model of steep coal seam mining under multi-field coupling[J].Journal of Xi’an University of Science and Technology,2009,29(6):647-653.
    [13]来兴平,伍永平,曹建涛,等.复杂环境下围岩变形大型三维模拟实验[J].煤炭学报,2010,35(1):31-36.LAI Xingping,WU Yongping,CAO Jiantao,et al. Experiment on rock-mass deformation of large scale 3D-simulation in complex environment[J].Journal of China Coal Society,2010,35(1):31-36.
    [14]单鹏飞.矿山高陡边坡稳定性三维物理模拟实验研究[D].西安:西安科技大学2013.SHAN Pengfei.Research on stabilization of high and steep slopes in open-pit mines based on three-dimensional physical simulation experiments[D]. Xi’an:Xi’an University of Science and Technology,2013.
    [15]魏宗勇,李莉,李树刚,等.覆岩采动裂隙中瓦斯运移三维实验台的研制与应用[J].煤矿安全,2015,46(7):5-8.WEI Zongyong,LI Li,LI Shugang,et al.Research and development of three dimensional test bench on gas migration in the mining fissure of overburden rock and its application[J]. Safety in Coal Mines,2015,46(7):5-8.
    [16]李树刚,赵鹏翔,林海飞,等.煤岩瓦斯“固-气”耦合理模拟相似材料特性实验研究[J].煤炭学报,2015,40(1):80-86.LI Shugang,ZHAO Pengxiang,LIN Haifei,et al.Study on character of physical simulation similar material of coal-rock and gas solid-gas coupling[J].Journal of China Coal Society,2015,40(1):80-86.
    [17]李树刚,林海飞,赵鹏翔,等.采动裂隙椭抛带动态演化及煤与甲烷共采[J].煤炭学报,2014,39(8):1455-1462.LI Shugang,LIN Haifei,ZHAO Pengxiang,et al.Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society,2014,39(8):1455-1462.
    [18]李术才,李清川,王汉鹏,等.大型真三维煤与瓦斯突出定量物理模拟试验系统研发[J].煤炭学报,2018,43(S1):121-129.LI Shucai,LI Qingchuan,WANG Hanpeng,et al. A largescale three-dimensional coal and gas outburst quantitative physical modeling system[J]. Journal of China Coal Society,2018,43(S1):121-129.
    [19]刘东,许江,尹光志,等.多场耦合煤矿动力灾害大型模拟试验系统研制与应用[J].岩石力学与工程学报,2013,32(5):967-975.LIU Dong,XU Jiang,YIN Guangzhi,et al. Development and application of multifield coupling testing system for dynamic disaster in coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(5):967-975.
    [20]袁瑞甫,李怀珍.含瓦斯煤动态破坏模拟实验设备的研制与应用[J].煤炭学报,2013,38(1):118-123.YUAN Ruifu,LI Huaizhen.Development and application of simulation test apparatus for gassy coal dynamic failure[J]. Journal of China Coal Society,2013,38(1):118-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700