用户名: 密码: 验证码:
日喀则弧前盆地的埋藏和剥蚀历史——来自低温热年代学的约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:BURIAL AND EXHUMATION OF THE XIGAZE FORE-ARC BASIN FROM LOW TEMPERATURE THERMOCHRONOLOGICAL EVIDENCE
  • 作者:葛玉魁 ; 刘静 ; 张金玉 ; 李亚林
  • 英文作者:GE Yu-kui;LIU-ZENG Jing;ZHANG Jin-yu;LI Ya-lin;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration;State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences and Resources,Research Center for Tibetan Plateau Geology,China University of Geosciences(Beijing);
  • 关键词:隆升剥蚀 ; 日喀则弧前盆地 ; 裂变径迹 ; 青藏高原
  • 英文关键词:uplift and erosion;;Xigaze fore-arc basin;;fission track;;Tibet Plateau
  • 中文刊名:DZDZ
  • 英文刊名:Seismology and Geology
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;中国地质大学(北京)生物地质与环境地质国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:地震地质
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划项目(2016YFC0600310);; 国家自然科学基金(41225010,41502188,41702223);; 中国地震局地质研究所地震动力学重点实验室项目(LED2016A02);中国地震局川滇国家地震监测预报实验场课题(2017CESE0102);; 中国科学院战略性先导科技专项(XDAXDA20070300)共同资助
  • 语种:中文;
  • 页:DZDZ201902012
  • 页数:20
  • CN:02
  • ISSN:11-2192/P
  • 分类号:200-219
摘要
日喀则弧前盆地紧邻印度板块与欧亚大陆碰撞带,研究其剥蚀历史对理解印度板块与欧亚大陆碰撞对造山带剥蚀的影响具有重要意义。文中利用磷灰石裂变径迹(AFT)及锆石和磷灰石的(U-Th)/He(ZHe和AHe)年龄数据,结合已发表的低温热年代数据探讨日喀则弧前盆地的热演化和剥露历史。日喀则弧前盆地磷灰石裂变径迹年龄存在明显的南北差异,南部磷灰石裂变径迹年龄为74~44Ma,对应的剥蚀速率为0. 03~0. 1km/Ma,剥蚀量≤2km;北部磷灰石裂变径迹年龄为27~15Ma,剥蚀速率为0. 09~0. 29km/Ma,但缺失早新生代的热演化历史。而磷灰石的(U-Th)/He年龄表明15Ma BP之后日喀则弧前盆地整体呈现一致的剥露历史。低温热年代数据表明日喀则弧前盆地南部自新生代以来尽管受到印度板块与欧亚大陆碰撞及后期断层活动的影响,海拔由海平面抬升至4. 2km,但一直保持缓慢的剥蚀,表明高原隆升并未直接促使该地区的岩石剥蚀速率加快,这与快速剥蚀即代表造山带开始隆升的假设不相符。此外,日喀则弧前盆地北部的低温热年代学研究表明晚渐新世—早中新世Kailas盆地仅发育于日喀则弧前盆地与冈底斯造山带之间的狭长地带,并在短期内经历了快速的埋藏和剥露。
        The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone.Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time,the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action,relief,and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides,the strong erosion zone will gradually change along the tectonic active zone that expands to the outward,north,or south sides.Therefore,the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial,deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion.In this study,we use the apatite fission track(AFT) ages and zircon and apatite(U-Th)/He(ZHe and AHe) ages,combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860 ~ 4 070 m. All zircon and apatite samples were dated by the external detector method,using low ~ U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×,dry) and FT Stage 4. 04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely,and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains.The new results show that the ZHe age of the sample M7-01 is(27. 06±2. 55) Ma(Table 2),and the corresponding AHe age is(9. 25±0. 76) Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age,indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74. 1± 7. 8) Ma and(18. 7± 2. 9) Ma,which are less than the corresponding stratigraphic age. The maximum AFT age is(74. 1± 7. 8) Ma,and the minimum AFT age is(18. 7±2. 9) Ma. There is a significant north ~ south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74 ~ 44 Ma,the corresponding exhumation rate is 0. 03 ~ 0. 1 km/Ma,and the denudation is less than 2 km; the apatite fission track ages of the north part range from 27 to 15 Ma and the ablation rate is 0. 09 ~ 0. 29 km/Ma,but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north ~ south Xigaze fore-arc basin has a consistent exhumation history after 15 Ma.The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60 Ma,the southern Xigaze forearc basin has been maintained in the depth of 0 ~ 6 km in the near surface,and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30 Ma because of the young low-temperature thermochronological data. During early Early Miocene,the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15 Ma. In addition,the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene ~ Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow,elongated zone between the fore-arc basin and the Gangdese orogenic belt.The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4. 2 km,despite the collision of the Indian plate with the Eurasian continent and the late fault activity,but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area,which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.
引文
柏道远,贾宝华,王先辉.2004.青藏高原隆升过程的磷灰石裂变径迹分析方法[J].沉积与特提斯地质,24(1):35-40.BAI Dao-yuan,JIA Bao-hua,WANG Xian-hui.2004.The apatite fission track analysis applied to the exploration of the uplifting of the Qinghai-Xizang Plateau[J].Sedimentary Geology and Tethyan Geology,24(1):35-40(in Chinese).
    常远,周祖翼.2010.利用低温热年代学数据计算剥露速率的基本方法[J].科技导报,28(21):86-94.CHANG Yuan,ZHOU Zu-yi.2010.Basic methods to inverse exhumation rates using low-temperature thermochronological data[J].Science&Technology Review,28(21):86-94(in Chinese).
    陈文,万渝生,李华芹,等.2011.同位素地质年龄测定技术及应用[J].地质学报,85(11):1917-1947.CHEN Wen,WAN Yu-sheng,LI Hua-qin,et al.2011.Isotope geochronology:Technique and application[J].Acta Geologica Sinica,85(11):1917-1947(in Chinese).
    丁林.1997.裂变径迹定年方法的进展及应用[J].第四纪研究(3):272--280.DING Lin.1997.Advance of fission-track analysis method and its application[J].Quaternary Sciences,(3):272-280(in Chinese).
    付明希.2003.磷灰石裂变径迹退火动力学模型研究进展综述[J].地球物理学进展,18(4):650-655.FU Ming-xi.2003.Review on the model of the apatite fission track annealing kinetics[J].Progress in Geophysics,18(4):650-655(in Chinese).
    郭荣华,胡修棉,王建刚.2012.日喀则弧前盆地碎屑铬尖晶石地球化学与物源判别[J].地学前缘,19(6):213-220.GUO Rong-hua,HU Xiu-mian,WANG Jian-gang.2012.Chemical compositions and provenance significance of the detrital Cr-Spinels from the Xigaze forearc basin,southern Tibet[J].Earth Science Frontiers,19(6):213-220(in Chinese).
    刘宝珺,余光明,陈成生.1990.西藏日喀则地区第三系大竹卡组砾质扇三角洲:片状颗粒流沉积[J].岩相古地理,(1):1-11.LIU Bao-jun,YU Guang-ming,CHEN Cheng-sheng.1990.Sheet grain-flow-dominated gravel fandeltas of the Tertiary Dagzhuka Formation in the Xigaz area,Xizang(Tibet)[J].Sedimentary,Facies and Palaeogeography,(1):1-11(in Chinese).
    万晓樵,丁林.2001.西藏仲巴地区白垩纪末期-始新世早期海相地层[J].地层学杂志,25(4):267-272.WAN Xiao-qiao,DING Lin.2001.Latest Cretaceous to early Eocene marine strata in the Zhongba region,Tibet[J].Journal of Stratigraphy,25(4):267-272(in Chinese).
    王瑜.2004.构造热年代学:发展与思考[J].地学前缘,11(4):435-443.WANG Yu.2004.Some thoughts on tectono-thermochronology[J].Geoscience Frontiers,11(4):435-443(in Chinese).
    尹集祥,孙晓兴,孙亦因,等.1988.西藏南部日喀则地区双磨拉石带磨拉石岩系的地层学研究[G].中国科学院地质研究所集刊,3:158-176.YIN Ji-xiang,SUN Xiao-xing,SUN Yi-yin,et al.1988.The stratigraphic research of dual molasse belt in Xigaze area,southern Tibet[G].Serially Published Monograph of Institute of Geology,Chinese Academy of Sciences,3:158-176(in Chinese).
    袁万明,杜杨松,杨立强,等.2007.西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析[J].岩石学报,23(11):2911-2917.YUAN Wan-ming,DU Yang-song,YANG Li-qiang,et al.2007.Apatite fission track studies on the tectonics in Nanmulin area of Gangdese terrane,Tibet plateau[J].Acta Petrologica Sinica,23(11):2911-2917(in Chinese).
    Aitchison J C,Davis A M,Ba D,et al.2003.The Gangdese thrust:Aphantom structure that did not raise Tibet[J].Terra Nova,15(3):155-162.
    An W,Hu X M,Garzanti E,et al.2014.Xigaze forearc basin revisited(South Tibet):Provenance changes and origin of the Xigaze Ophiolite[J].Geological Society of America Bulletin,126(11-12):1595-1613.
    Braun J.2016.Strong imprint of past orogenic events on the thermochronological record[J].Tectonophysics,683:325-332.
    Carrapa B,Orme D A,De Celles P G,et al.2014.Miocene burial and exhumation of the India-Asia collision zone in southern Tibet:Response to slab dynamics and erosion[J].Geology,42(5):443-446.
    Coleman M,Hodges K.1995.Evidence for Tibetan Plateau uplift before 14Myr ago from a new minimum age for eastwest extension[J].Nature,374(6517):49-52.
    Copeland P,Harrison T M,Yun P,et al.1995.Thermal evolution of the Gangdese batholith,Southern Tibet:Ahistory of episodic unroofing[J].Tectonics,14(2):223-236.
    Dai J G,Wang C S,Hourigan J,et al.2013a.Exhumation history of the Gangdese Batholith,southern Tibetan Plateau:Evidence from apatite and zircon(U-Th)/He thermochronology[J].Journal of Geology,121(2):155-172.
    Dai J G,Wang C S,Polat A,et al.2013b.Rapid forearc spreading between 130 and 120Ma:Evidence from geochronology and geochemistry of the Xigaze ophiolite,southern Tibet[J].Lithos,172:1-16.
    Dai J G,Wang C S,Zhu D,et al.2015.Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous:Insights from the Xigaze forearc basin[J].Lithos,218-219:127-140.
    De Celles P G,Kapp P,Quade J,et al.2011.Oligocene-Miocene Kailas Basin,southwestern Tibet:Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J].Geological Society of America Bulletin,123(7-8):1337-1362.
    Ding L,Spicer R,Yang J,et al.2017.Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J].Geology,45(3):215-218.
    Ding L,Xu Q,Yue Y,et al.2014.The Andean-type Gangdese Mountains:Paleoelevation record from the PaleoceneEocene Linzhou Basin[J].Earth and Planetary Science Letters,392:250-264.
    Dürr S B.1996.Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous,south Tibet)[J].Geological Society of America Bulletin,108(6):669-684.
    Einsele G,Liu B,Durr S,et al.1994.The Xigaze forearc basin:Evolution and facies architecture(Cretaceous,Tibet)[J].Sedimentary Geology,90(1-2):1-32.
    Evans N J,Byrne J P,Keegan J T,et al.2005.Determination of uranium and thorium in zircon,apatite,and fluorite:Application to laser(U-Th)/He thermochronology[J].Journal of Analytical Chemistry,60(12):1159-1165.
    Farley K A.2002.(U-Th)/He dating:Techniques,calibrations,and applications[J].Reviews in Mineralogy and Geochemistry,47(1):819-844.
    Ge Y K,Dai J G,Wang C S,et al.2017.Cenozoic thermo-tectonic evolution of the Gangdese batholith constrained by low-temperature thermochronology[J].Gondwana Research,41:451-462.
    Ge Y K,Li Y,Wang X,et al.2018.Oligocene-Miocene burial and exhumation of the southernmost Gangdese Mountains from sedimentary and thermochronological evidence[J].Tectonophysics,723:68-80.
    Gleadow A J W.1981.Fission-track dating methods:What are the real alternatives?[J].Nuclear Tracks,5(1-2):3-14.
    Gou Z,Zhang Z,Dong X,et al.2016.Petrogenesis and tectonic implications of the Yadong leucogranites,southern Himalaya[J].Lithos,256-257:300-310.
    Haider V L,Dunkl I,von Eynatten H,et al.2013.Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the early Paleogene development of peneplains at Nam Co,Tibetan Plateau[J].Journal of Asian Earth Sciences,70-71:79-98.
    Harrison T M,Copeland P,Kidd W S,et al.1992.Raising Tibet[J].Science,255(5052):1663-1670.
    Hetzel R,Dunkl I,Haider V,et al.2011.Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J].Geology,39(10):983-986.
    Hu X M,Garzanti E,Moore T,et al.2015.Direct stratigraphic dating of India-Asia collision onset at the Selandian(middle Paleocene,59±1Ma)[J].Geology,43(10):859-862.
    Huang W,Dupont-Nivet G,Lippert P C,et al.2015.Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin(southern Tibet)to date the India-Asia collision?[J].Journal of Geophysical Research:Solid Earth,120(1):42-66.
    Ji W Q,Wu F Y,Chung S L,et al.2009.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,262(3-4):229-245.
    Ketcham R,Donelick R,Carlson W.1999.Variability of apatite fission-track annealing kineticsⅢ:Extrapolation to geological time scales[J].American Mineralogist,84:1235-1255.
    Lee H Y,Chung S L,Lo C H,et al.2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J].Tectonophysics,477(1-2):20-35.
    Li G,Kohn B,Sandiford M,et al.2016.Synorogenic morphotectonic evolution of the Gangdese batholith,south Tibet:Insights from low-temperature thermochronology[J].Geochemistry Geophysics Geosystems,17(1):101-112.
    Li G W,Kohn B,Sandiford M,et al.2017.India-Asia convergence:Insights from burial and exhumation of the Xigaze fore-arc basin,south Tibet[J].Journal of Geophysical Research:Solid Earth,122(5):3430-3449.
    Li S,Ding L,Xu Q,et al.2017.The evolution of Yarlung Tsangpo River:Constraints from the age and provenance of the Gangdese conglomerates,southern Tibet[J].Gondwana Research,41:249-266.
    Lu L,Zhen Z,Zhenhan W,et al.2015.Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong Microcontinent,Tibet[J].Acta Geologica Sinica(English Edition),89(1):133-144.
    Najman Y,Jenks D,Godin L,et al.2017.The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54Ma in the western Himalaya[J].Earth and Planetary Science Letters,459:301-310.
    Orme D A.2017.Burial and exhumation history of the Xigaze forearc basin,Yarlung suture zone,Tibet[J].Geoscience Frontiers,10(3):895-908.https://doi.org/10.101 6/j.gsf.2017.11.011.
    Orme D A,Carrapa B,Kapp P.2015.Sedimentology,provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin,southern Tibet[J].Basin Research,27(4):387-411.
    Orme D A,Laskowski A K.2016.Basin analysis of the Albian-Santonian Xigaze forearc,Lazi region,south-central Tibet[J].Journal of Sedimentary Research,86(8):894-913.
    Pan Y,Copeland P,Roden M K,et al.1993.Thermal and unroofing history of the Lhasa area,southern Tibet:Evidence from apatite fission-track thermochronology[J].Nuclear Tracks and Radiation Measurements,21(4):543-554.
    Reiners P W,Brandon,M T.2006.Using thermochronology to understand orogenic erosion[J].Annual Review of Earth and Planetary Sciences,34:419-466.
    Rohrmann A,Kapp P,Carrapa B,et al.2012.Thermochronologic evidence for plateau formation in central Tibet by45Ma[J].Geology,40(2):187-190.
    Styron R,Taylor M,Sundell K.2015.Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J].Nature Geoscience,8(2):131-134.
    Tian Y T,Kohn B P,Gleadow A J W,et al.2013.Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology[J].Tectonics,32(3):576-592.
    Tremblay M M,Fox M,Schmidt J L,et al.2015.Erosion in southern Tibet shut down at~10Ma due to enhanced rock uplift within the Himalaya[J].Proceedings of the National Academy of Sciences,112(39):12030-12035.
    Wan X Q,Luo W,Wang C S,et al.1998.Discovery and significance of Cretaceous fossils from the Xigaze forearc basin,Tibet[J].Journal of Asian Earth Sciences,16(2-3):217-223.
    Wang C S,Li X,Liu Z,et al.2012.Revision of the Cretaceous-Paleogene stratigraphic framework,facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone[J].Gondwana Research,22(2):415-433.
    Wang C S,Zhao X,Liu Z,et al.2008.Constraints on the early uplift history of the Tibetan Plateau[J].Proceedings of the National Academy of Sciences,105(13):4987-4992.
    Wang E,Kamp P J J,Xu G,et al.2015.Flexural bending of southern Tibet in a retro foreland setting[J].Scientific Reports,5:12076.
    Wang E,Kirby E,Furlong K P,et al.2012.Two-phase growth of high topography in eastern Tibet during the Cenozoic[J].Nature Geoscience,5(9):640-645.
    Wang J G,Hu X,Garzanti E,et al.2017.The birth of the Xigaze forearc basin in southern Tibet[J].Earth and Planetary Science Letters,465:38-47.
    Wang J G,Hu X M,Garzanti E,et al.2013.Upper Oligocene-lower Miocene Gangrinboche conglomerate in the Xigaze area,southern Tibet:Implications for Himalayan uplift and paleo-Yarlung-Zangbo initiation[J].Journal of Geology,121(4):425-444.
    Wang Y,Zhang X,Sun L,et al.2007.Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau(China):Constrained by40Ar/39Ar and apatite fission track thermochronology[J].Journal of Asian Earth Sciences,29(2-3):266-282.
    Willett S D,Brandon M T.2013.Some analytical methods for converting thermochronometric age to erosion rate[J].Geochemistry Geophysics Geosystems,14(1):209-222.
    Woodruff W H,Horton B K,Kapp P,et al.2012.Late Cenozoic evolution of the Lunggar extensional basin,Tibet:Implications for basin growth and exhumation in hinterland plateaus[J].Geological Society of America Bulletin,125(3-4):343-358.
    Wu F Y,Ji W Q,Liu C Z,et al.2010.Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J].Chemical Geology,271(1-2):13-25.
    Xu Q,Ding L,Hetzel R,et al.2015.Low elevation of the northern Lhasa terrane in the Eocene:Implications for relief development in south Tibet[J].Terra Nova,27(6):458-466.
    Yin A,Harrison T M,Murphy M A,et al.1999.Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J].Geological Society of America Bulletin,111(11):1644-1664.
    Yin A,Harrison T M,Ryerson F J,et al.1994.Tertiary structural evolution of the Gangdese thrust system,southeastern Tibet[J].Journal of Geophysical Research-Solid Earth,99(B8):18175-18201.
    Yuan W M,Deng J,Zheng Q G,et al.2009.Apatite fission track constraints on the Neogene tectono-thermal history of Nimu area,southern Gangdese terrane,Tibet Plateau[J].Island Arc,18(3):488-495.
    Zhang Z J,Chen Y,Yuan X H,et al.2013.Normal faulting from simple shear rifting in South Tibet,using evidence from passive seismic profiling across the Yadong-Gulu Rift[J].Tectonophysics,66:178-186.
    (1)Gleadow A J W,1984,Fission Track Dating Methods,A Manual of Principles and Techniques,University of Melbourne。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700