用户名: 密码: 验证码:
稀土铈对Ni-Mo-P-PTFE镀层组织结构与防垢性能的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Cerium on Microstructure and Scale Inhibition Performance of Ni-Mo-P-PTFE Coating
  • 作者:杨梓健 ; 付传 ; 王宙 ; 高越 ; 项永矿
  • 英文作者:YANG Zi-jian;FU Chuan-qi;WANG Zhou;GAO Yue;XIANG Yong-kuang;School of Physical Science and Technology, Dalian University;School of Mechanical Engineering, Dalian University;
  • 关键词:PTFE粒子 ; 稀土铈 ; 硫酸铈 ; Ni-Mo-P-PTFE复合镀层 ; 组织结构 ; 阻垢性能
  • 英文关键词:PTFE particles;;rare earth cerium;;cerium sulfate;;Ni-Mo-P-PTFE composite coating;;microstructure;;scale inhibition performance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:大连大学物理科学与技术学院;大连大学机械工程学院;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201902014
  • 页数:5
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:99-103
摘要
目的在化学镀Ni-Mo-P-PTFE的工艺基础上向镀液中加入稀土铈,确定当Ni-Mo-P-PTFE镀层的沉积速率达到最大、组织结构最优、PTFE含量最高和防垢性能最好时稀土铈的浓度。方法制备Ni-Mo-P-PTFE复合镀层,在镀液中分别添加不同含量的稀土铈。通过金相显微镜、X射线能谱仪、X射线衍射仪、电子显微镜、电子天平等对复合镀层成分和结构进行表征,确定稀土铈诱导共沉积Ni-Mo-P-PTFE复合镀层的最佳工艺。结果随着镀液中稀土铈浓度的添加,复合镀层的沉积速率呈现先增后减的趋势,同时促进了镀层由晶态向非晶态结构的转变。PTFE的含量在加入稀土铈后有明显的提高,呈现先增后减的趋势。镀层的结垢率也随硫酸铈的加入而降低,在硫酸铈为0.04 g/L时达到最低值0.656 g/m2,此质量浓度镀层的防垢性能最佳。结论当硫酸铈质量浓度为0.04 g/L时,PTFE粒子沉积速率达到最大,为28.214μm/h,PTFE粒子体积分数达到40.43%,同时具有最好的阻垢性能。综合考虑,制备Ni-Mo-P-PTFE复合镀层时,最佳的稀土铈质量浓度为0.04 g/L。
        The work aims to determine the concentration of rare earth cerium by adding rare earth cerium into the bath onthe basis of electroless Ni-Mo-P-PTFE plating process when the deposition rate of Ni-Mo-P-PTFE coating is the maximum, themicrostructure is optimal, the PTFE content is the highest and the scale resistance is the best. Ni-Mo-P-PTFE composite coatingwas prepared, and different contents of rare earth cerium were added to the bath. The composition and structure ofNi-Mo-P-PTFE composite coating were characterized by metallographic microscope, energy dispersive X-ray spectrometer,X-ray diffraction, electron microscope and electronic balance. The optimum process of rare earth cerium-induced co-depositionof Ni-Mo-P-PTFE composite coating was determined. The deposition rate of the composite coating increased first and then de-creased with the addition of rare earth cerium concentration in the bath, and promoted the transformation of the coating fromcrystalline state to amorphous state. The content of PTFE increased obviously after rare earth cerium was added and increasedfirst and then decreased. The fouling rate of the coating also decreased with the addition of cerium sulfate and then reached thelowest value of 0.656 g/m2 at 0.04 g/L, and the anti-fouling performance of the coating was the best. When the concentration ofcerium sulfate is 0.04 g/L, the deposition rate reaches the maximum value of 28.214 μm/h, the volume fraction of PTFE particlesreaches 40.43% and the best anti-fouling performance is obtained. For overall consideration, the best cerium concentration toprepare Ni-Mo-P-PTFE composite coating is 0.04 g/L.
引文
[1]刘瑕,袁艺智,吴柱莹,等.稀土铈离子和丝氨酸对碳钢的缓蚀协同作用研究[J].石化技术与应用,2018,15(8):76-79.LIU Xia,YUAN Yi-zhi,WU Zhu-ying,et al.Study on synergistic effect of rare earth cerium ion and serine on corrosion inhibition of carbon steel[J].Petrochemical technology and application,2018,15(8):22-33.
    [2]易幻,蔡水洲,邹辉.稀土铈对铝镁铈合金燃料热性能的影响[J].稀有金属材料与工程,2018,47(4):1185-1191.YI Huan,CAI Shui-zhou,ZOU Hui.Effect of rare earth cerium on thermal properties of Al-Mg-Ce alloy fuels[J].Rare metal materials and engineering,2018,47(4):1185-1191.
    [3]程延海,邹勇,程林,等.表面改性对换热面抗垢性能的影响[J].工程热物理学报,2015,30(9):1528-1530.CHENG Yan-hai,ZOU Yong,CHENG Lin,et al.Effect of surface modification on fouling resistance of heat transfer surface[J].Journal of engineering thermophysics,2009,30(9):1528-1530.
    [4]MATTER E A,KOZHUKHAROV S,MACHKOVA M,et al.Comparison between the inhibition efficiencies of Ce(III)and Ce(IV)ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration[J].Corrosion science,2012,62:22-33.
    [5]MUSTER T H,SULLIVAN H,LAU D,et al.A combinatorial matrix of rare earth chloride mixtures as corrosion inhibitors of AA2024-T3:optimisation using potentiodynamic polarisation and EIS[J].Electrochimca acta,2012,67:95-103.
    [6]KARIMI A,DANAEE I,ESKANDARI H,et al.Adsorption isotherm and inhibition effect of a synthesized di-(m-formylphenol)-1,2-cyclohexandiimine on corrosion of steel X52 in HCl solution[J].Journal of Central South University,2016,23:249-257.
    [7]ZHU Yan-hua,ZHUANG Jia,YU Yong-sheng,et al.Research on anti-corrosion property of rare earth inhibitor for X70 steel[J].Journal of rare earth,2013,31(7):734-740.
    [8]MISHRA A K,BALASUBRAMANIAM R.Corrosion inhibition of aluminium by rare earth chlorides[J].Materials chemistry and physics,2007,103(2-3):385-393.
    [9]MONTEMOR M F,SIMOES A M,CARMEZIM M J.Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection[J].Applied surface science,2017,253(16):6922-6931.
    [10]BLIN F,KOUTSOUKOS P,KLEPETSIANIS P,et al.The corrosion inhibition mechanism of new rare earth cinnamate compounds-electrochemical studies[J].Electrochimica acta,2013,52(21):6212-6220.
    [11]ZHANG Bing-ru,HE Cheng-jun,WANG Cheng,et al.Synergistic corrosion inhibition of environment-friendly inhibitors on the corrosion of carbon steel in soft water[J].Corrosion science,2015,94:6-20.
    [12]KALLIP S,BASTOS A C,YASAKAU K A,et al.Synergistic corrosion inhibition on galvanically coupled metallic materials[J].Electrochemistry communications,2012,20:101-104.
    [13]LIANG Bo,LIU Jing,LU Guan-yu.Electroless deposition of amorphous Ni-Mo-P coating on aluminium alloy using acid bath[J].Journal of Yanshan University,2011,35(6):523-527.
    [14]QU Yu-ping,LI Zhong-hou,QIN Yan-mei.Study on electroless Ni-P plating on magnesium alloy[J].Surface technology,2005,34(1):43-45.
    [15]SHI Xi-chang,YANG Hui-lan,XIAO Xiang,et al.Eletroless nickel plating on AZ31 magniusm alloy surface[J].Corrosion science and protection technology,2009,21(4):370-373.
    [16]YANG Pei-xia,ZHOU Dong-hua,YANG Wei-jing,et al.Effect of phosphating pretreatment on properties of electroless nickel coating of magnesium alloy[J].Journal of materials protection,2011,44(6):37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700