用户名: 密码: 验证码:
石墨烯气凝胶复合材料制备及吸附性能的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in the preparation and adsorption capability of graphene aerogel composite materials
  • 作者:钟铠 ; 张弛 ; 仲亚 ; 崔升 ; 沈晓冬
  • 英文作者:Zhong Kai;Zhang Chi;Zhong Ya;Cui Sheng;Shen Xiaodong;College of Materials Science and Engineering,Nanjing Tech University;Suqian Advanced Materials Institute,Nanjing Tech University;Suqian Anjiao Technology Co.,Ltd.;
  • 关键词:石墨烯 ; 气凝胶 ; 三维网络结构 ; 吸附性能
  • 英文关键词:graphene;;aerogel;;three-dimensional network structure;;adsorption capability
  • 中文刊名:GYSC
  • 英文刊名:Industrial Water Treatment
  • 机构:南京工业大学材料科学与工程学院;宿迁市南京工业大学新材料研究院;宿迁安吉奥科技有限公司;
  • 出版日期:2019-06-20
  • 出版单位:工业水处理
  • 年:2019
  • 期:v.39;No.340
  • 基金:国家青年科学基金项目(51702156);; 江苏省自然科学基金-青年基金项目(BK20161002);; 江苏省科技型创业企业孵育计划项目(BC2016036);; 江苏省第十五批“六大人才高峰”创新人才团队项目(XCL-231);; 江苏省大学生创新创业训练计划项目(201810291019Z)
  • 语种:中文;
  • 页:GYSC201906003
  • 页数:7
  • CN:06
  • ISSN:12-1087/X
  • 分类号:9-14+20
摘要
石墨烯气凝胶(GA)拥有以石墨烯为主体的多孔互联三维海绵状网络结构。作为一种新兴的纳米多孔材料,因其具有高疏水性、高比表面积、高孔隙率以及良好的化学稳定性,在吸附领域具有巨大的应用前景。结合相关研究,重点介绍了石墨烯、纤维素/石墨烯、碳纳米管/石墨烯、氮掺杂/石墨烯、金属氧化物/石墨烯等几种体系的气凝胶材料的制备方法,并对其吸附性能的研究进展进行了阐述。
        Graphene aerogel(GA) is a kind of porous interconnected three-dimensional spongy network structure dominated by graphene. As an emerging nanoporous material,it has high hydrophobicity,high specific surface area,high porosity and good chemical stability,enabling it to have great application prospects in the field of adsorption.Combined with relevant researches,the preparation methods of aerogel materials of several systems,such as graphene,cellulose/graphene,carbon nanotube/graphene,nitrogen-doped/graphene,metal oxide/graphene,etc. are introduced emphatically,and the research progress in their adsorption capability expounded.
引文
[1]Chae H K,Siberiopérez D Y,Kim J,et al. A route to high surface area,porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527.
    [2]Eda G,Chhowalla M. Graphene-based composite thin films for electronics[J]. Nano Letters, 2009,9(2):814-818.
    [3]Wang Xuan,Zhi Linjie,Müllen K. Transparent,conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters,2008,8(1):323-327.
    [4]Schedin F,Geim A K,Morozov S V,et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials,2007,6(9):652-655.
    [5]Sutter P W,Flege J I,Sutter E A. Epitaxial graphene on ruthenium[J]. Nature Materials, 2008,7(5):406-411.
    [6]Zaman I,Kuan H C,Dai J,et al. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites[J]. Nanoscale,2012,4(15):4578-4586.
    [7]Chen Wufeng,Li Sirong,Chen Chunhua,et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials,2011,23(47):5679-5683.
    [8]Nardecchia S,Carriazo D,Ferrer M L,et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chemical Society Reviews,2013,44(21):794-830.
    [9]Fricke J. Aerogels and their applications[J]. Journal of Non-Crystalline Solids,1992, 147/148:356-362.
    [10]Gross J,Fricke J,Hrubesh L W. Sound propagation in SiO2aerogels[J]. Journal of the Acoustical Society of America,1992,91(4):2004-2006.
    [11]Vinod S,Tiwary C S,Autreto P A D S,et al. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers[J]. Nature Communications,2014,5:4541.
    [12]Bai Hua,Li Chun,Wang Xiaolin,et al. On the gelation of graphene oxide[J]. Journal of Physical Chemistry C,2011,115(13):5545-5551.
    [13]Wu Zhongshuai,Zhou Guangmin,Yin Lichang,et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1(1):107-131.
    [14]Xiao Jianliang,Lv Weiyang,Song Yihu,et al. Graphene/nanofiber aerogels:Performance regulation towards multiple applications in dye adsorption and oil/water separation[J]. Chemical Engineering Journal,2018,338:202-210.
    [15]Wang Chunchun,Yang Sudong,Ma Qing,et al. Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds[J]. Carbon,2017, 118:765-771.
    [16]Cao Jianyu,Song Lingzheng,Tang Jiali,et al. Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation[J].Applied Surface Science,2013,274(2):138-143.
    [17]Xu Yuxi,Sheng Kaixuan,Li Chun,et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324-4330.
    [18]Sun Haiyan,Xu Zhen,Gao Chao. Multifunctional,ultra-flyweight,synergistically assembled carbon aerogels[J]. Advanced Materials,2013,25(18):2554-2560.
    [19]Bai Hua,Sheng Kaixuan,Zhang Pengfei,et al. Graphene oxide/conducting polymer composite hydrogels[J]. Journal of Materials Chemistry,2011,21(46):18653-18658.
    [20]Wang Z,Shen X,Han N M,et al. Ultralow electrical percolation in graphene aerogel/epoxy composites[J]. Chemistry of Materials,2016,28(18):6731-6741.
    [21]Park S,An J,Potts J R,et al. Hydrazine-reduction of graphite-and graphene oxide[J]. Carbon,2011,49(9):3019-3023.
    [22]Zhang Xuetong,Sui Zhuyin,Xu Bin,et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry,2011,21(18):6494-6497.
    [23]Worsley M A,Kucheyev S O,Mason H E,et al. Mechanically robust3D graphene macroassembly with high surface area[J]. Chemical Communications,2012,48(67):8428-8430.
    [24]Shinkai T,Sugiyama K,Ito K,et al. Nanoporous fabrication of block copolymers via carbon dioxide swelling:Difference between CO2-swollen and nanoporous block copolymers[J]. Polymer,2016,100:19-27.
    [25]Ma Xiaomei,Li Yanhong,Wang Wenchao,et al. Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior[J]. European Polymer Journal,2013,49(2):389-396.
    [26]Hu Han,Zhao Zongbin,Wan Wubo,et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials,2013,25(15):2219-2223.
    [27]Vickery J L,Patil A J,Mann S. Fabrication of grapheme-polymer nanocomposites with higher-order three-dimensional architectures[J].Advanced Materials,2010,21(22):2180-2184.
    [28]Pandele A M,Ionita M,Crica L,et al. Novel chitosan-poly(vinylalcohol)/graphene oxide biocomposites 3D porous scaffolds[J].Composites Part B:Engineering,2017,126:81-87.
    [29]Chen Zongping,Ren Wencai,Gao Libo,et al. Three-dimensional flexible and conductive intercon nected graphene networks grown by chemical vapour deposition[J]. Nature Materials,2011,10(6):424-428.
    [30]Estevinho B N,Martins I,Ratola N,et al. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant[J]. Journal of Hazardous Materials,2007,143(1):535-540.
    [31]Zhang Long,Zhang Fan,Yang Xi,et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific Reports,2013,3:1408.
    [32]Chen Kunfeng,Liu Fei,Song Shuyan,et al. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper[J]. CrysTengComm,2014,16(33):7771-7776.
    [33]Riaz M A,Hadi P,Abidi I H,et al. Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water[J]. RSC Advances,2017,7(47):29722-29731.
    [34]Ren Ruipeng,Li Wei,Lv Yongkang. A robust,superhydrophobic graphene aerogel as a recyclable sorbent for oils and organic solvents at various temperatures[J]. Journal of Colloid Interface Science,2017,500:63-68.
    [35]Dai Jian,Huang Ting,Tian Suqi,et al. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment[J]. Materials&Design,2016,107:187-197.
    [36]Medeiros E S D,Agnelli J A M,Joseph K,et al. Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics[J]. Polymer Composites,2005,26(1):1-11.
    [37]Júnior C Z P,Carvalho L H D,Fonseca V M,et al. Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites[J]. Polymer Testing,2004,23(2):131-135.
    [38]Wei Xiao,Huang Ting,Yang Jinghui,et al. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents[J]. Journal of Hazardous Materials,2017,335:28-38.
    [39]Mi Haoyang,Jing Xin,Politowicz A L,et al. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption[J]. Carbon,2018,132:199-209.
    [40]Adebajo M O,Frost R L,Kloprogge J T,et al. Porous materials for oil spill cleanup:A review of synthesis and absorbing properties[J].Journal of Porous Materials,2003,10(3):159-170.
    [41]Wan Wenchao,Zhang Ruiyang,Li Wei,et al. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient absorbent for oil and dyes[J]. Environmental Science:Nano,2016,3(1):107-113.
    [42]Zhan Wenwei,Yu Siruo,Gao Liang,et al. Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup[J]. ACS Applied Materials&Interfaces,2018,10(1):1093-1103.
    [43]Shu Di,Feng Feng,Han Hongliang,et al. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth[J]. Chemical Engineering Journal,2017,324:1-9.
    [44]Du Yongxu,Liu Libin,Xiang Yu,et al. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J].Journal of Power Sources,2018,379:240-248.
    [45]Ren Hongbo,Shi Xianpan,Zhu Jiayi,et al. Facile synthesis of Ndoped graphene aerogel and its application for organic solvent adsorption[J]. Journal of Materials Science,2016,51(13):6419-6427.
    [46]Tran D,Kabiri S,Wang L,et al. Engineered grapheme-nanoparticle aerogel composites for efficient removal of phosphate from water[J].Journal of Materials Chemistry A,2015,3(13):6844-6852.
    [47]Wu Tao,Chen Mingxi,Zhang Lei,et al. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance[J]. Journal of Materials Chemistry A,2013,1(26):7612-7621.
    [48]Zhang Y,Yan X,Yan Y,et al. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment[J]. RSC Advances,2018,8:4239-4248.
    [49]Chen Long,Li Yanhui,Du Qiuju,et al. High performance agar/graphene oxide composite aerogel for methylene blue removal[J]. Carbohydrate Polymers,2017,155:345-353.
    [50]Yu Ruomeng,Shi Yongzheng,Yang Dongzhi,et al. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants[J]. ACS Applied Materials&Interfaces,2017,9(26):21809-21819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700