用户名: 密码: 验证码:
青藏高原东南部巴松措现代沉积过程及其对气候变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modern sedimentary process of Lake Basomtso in the southeastern Tibetan Plateau and its response to climate change
  • 作者:马学志 ; 王永波 ; 赵辰辰 ; 倪振宇
  • 英文作者:MA Xuezhi;WANG Yongbo;ZHAO Chenchen;NI Zhenyu;College of Resource Environment and Tourism,Capital Normal University;Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:青藏高原 ; 巴松措 ; 湖泊沉积物 ; 气候变化 ; 现代过程
  • 英文关键词:Tibetan Plateau;;Lake Basomtso;;lacustrine sediment;;climate change;;modern sedimentation process
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:首都师范大学资源环境与旅游学院;中国科学院南京地理与湖泊研究所;中国科学院大学;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41877282,41502325);; 首都师范大学高层次人才教学科研支持费(011185516000)联合资助
  • 语种:中文;
  • 页:FLKX201904026
  • 页数:13
  • CN:04
  • ISSN:32-1331/P
  • 分类号:281-293
摘要
湖泊沉积物是记录气候演化信息的重要载体之一,在探讨过去气候变化过程研究中发挥重要作用.然而,沉积物中的许多代用指标对气候的指示意义存在多解性,不同指标所反映的环境信息相互之间有时会存在矛盾.为了能够更准确地解读湖泊沉积物中指标所记录的环境变化信息,开展现代湖泊沉积物指标与环境之间的关系研究,深入探讨各指标对环境变化的响应机制尤为关键.本文选取青藏高原东南部巴松措湖泊表层沉积物作为研究对象,利用210Pb与137Cs比活度检测结果建立年代序列,对沉积物中粒度、磁化率、有机质含量等指标进行分析,揭示巴松措现代沉积过程.结合沉积物粒度端元组分分析结果,并将不同指标变化与林芝气象站所记录的数据资料进行对比,得出以下主要结论:该地区沉积物来源主要包括径流搬运的冰川碎屑物质和来自青藏高原南部、西南部上空悬浮于大气中的风成物质两部分;其中,通过风力搬运的物质输入主要集中在冬半年,受季节性风向及风速变化影响明显;径流受到冰雪融水与夏季降水的补给,因此通过径流搬运的物质输入量受到温度与降水综合影响;湖泊中磁性矿物碎屑的产生和输入主要受区域降水量影响的流域侵蚀速率变化控制,该湖泊沉积物磁化率波动可以有效的指示该地区降水量变化;沉积物中总有机碳含量和总氮含量变化主要反映湖泊自身初级生产力的变化,对区域温度变化的响应显著.
        Lacustrine sediment has been regarded as one of the most important archives for inferring information about past climate fluctuations,which presented significant palaeoclimate sequences at different time scales. Various proxies have been investigated to acquire signals of climate changes,which,however,does not always lead to consistent inferences. In order to acquire the information of reliable climate changes from lake sediments,we now intend to investigate the relationship between sedimentary proxies and environment parameters especially the climate changes,to explore how the proxies respond to environment change. Thus,we chose Lake Basomtso from the southeastern Tibetan Plateau as our study area considering the high sedimentation rate and rare human activities. Combined with the chronology based on measurements of210 Pb and137 Cs,grain size,magnetic susceptibility and organic matter content of the modern sediments from both sediment cores and traps were analyzed. The results were subsequently compared with modern meteorological data from Nyingchi Station. The sediment mainly consists of two parts: the aeolian transported materials during the winter time from the south and southwest of the Tibetan Plateau,which showed significant consistence with the regional wind speed; and the fluvial transported materials that influenced by the temperature( melting effect) and precipitation together.The fluctuation of magnetic susceptibility of lake sediment of Lake Basomtso mainly reflects the input of magnetic mineral,which is closely affected by the precipitation related erosion rate. Finally,the variation of total organic carbon,total nitrogen content generally showed a gradual increasing trend of lake primary productivity,which responds closely to the changes of temperature,especially the global warming process.
引文
[1] Shen J. Progress and prospect of palaeolimnology research in China. J Lake Sci,2009,21(3):307-313. DOI:10.18307/2009.0301.[沈吉.湖泊沉积研究的历史进展与展望.湖泊科学,2009,21(3):307-313.]
    [2] Last WM,Smol JP,Last WM et al. Tracking environmental change using lake sediments. Volume 1:basin analysis,coring,and chronological techniques. Freshwater Biology,2001,49(5):678-679.
    [3] Liu X,Dong H,Yang X et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth&Planetary Science Letters,2009,280(1):276-284. DOI:10.1016/j.TIFl.2009.01.041.
    [4] An Z,Clemens SC,Shen J et al. Glacial-interglacial Indian summer monsoon dynamics. Science,2004,6043(333):719-723. DOI:10.1126/science.1203752.
    [5] Shen J,Liu X,Wang S et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International,2005,136(1):131-140. DOI:10.1016/j.quaint.2004.11.014.
    [6] Jia TF,Dai XR,Zhang WG et al. Sediment records in Chaohu Lake and its significance on environmental change in Holocene. Scientia Geographica Sinica,2006,(6):706-711.[贾铁飞,戴雪荣,张卫国等.全新世巢湖沉积记录及其环境变化意义.地理科学,2006,(6):706-711.]
    [7] Dietze E,Kai H,Diekmann B et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona,NE Tibetan Plateau,China. Sedimentary Geology,2012,243(1):169-180. DOI:10.1016/j.sedgeo.2011.09.014.
    [8] Li ZG. Glaciers and lakes changes on the Qinghai-Tibet Plateau under climate change in the past 50 years. Journal of Natural Resources,2012,(8):1431-1443.[李治国.近50a气候变化背景下青藏高原冰川和湖泊变化.自然资源学报,2012,(8):1431-1443.]
    [9] Wu D,Zhou A,Liu J et al. Changing intensity of human activity over the last 2,000 years recorded by the magnetic characteristics of sediments from Xingyun Lake,Yunnan,China. Journal of Paleolimnology,2015,53(1):47-60. DOI:10.1007/s10933-014-9806-2.
    [10] Meyers PA,Lallier-Vergés E. Lacustrine sedimentary organic matter records of late quaternary paleoclimates. Journal of Paleolimnology,1999,21(3):345-372. DOI:10.1023/A:1008073732192.
    [11] Feng SM,liu DY,Li DJ et al. Analysis on the temporal and spatial distribution of the primary productivity and its influencing factors in Lake Taiping(Reservoir),Anhui Province. J Lake Sci,2016,28(6):1361-1370. DOI:10.18307/2016.0622.[冯世敏,刘冬燕,李东京等.安徽太平湖水库初级生产力时空分布及分析.湖泊科学,2016,28(6):1361-1370.]
    [12] Hu Y,Yu H,Li ZQ. Effects of wet deposition on water quality and primary productivity in the Meiliang bay of Lake Tai.Resources and Environment in the Yangtza Basin,2014,23(1):75-80. DOI:10.11870/cjlyzyyhj201401011.[胡洋,余辉,李中强.湿沉降对湖泊水质及初级生产力的影响.长江流域资源与环境,2014,23(1):75-80.]
    [13] Chen CH,Wang JZ,Zhu C et al. Relationship between the sediment pigment records of Lake Lugu and the regional climate change over the last 200 a. J Lake Sci,2012,24(5):780-788. DOI:10.18307/2012.0520.[陈传红,汪敬忠,朱迟等.近200 a来泸沽湖沉积物色素记录与区域气候变化的关系.湖泊科学,2012,24(5):780-788.]
    [14] Dong SP,Li ZL,Chen Q et al. Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert,Northwest China. Journal of Limnology,2018,77(1):121-129.DOI:10.4081/jlimnol.2017.1667.
    [15] Li ZL,Wei ZQ,Dong SP et al. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes:A case study in the hinterland of the Badain Jaran Desert,northwest China. Earth Surface Processes and Landforms,2017,43(2):363-372. DOI:10.1002/esp.4248.
    [16] Chen JA,Wang GJ. Sediment particle size distribution and its environmental significance in Lake Erhai,Yunnan province.Acta Mineralogica Sinica,1999,(2):175-182.[陈敬安,万国江.云南洱海沉积物粒度组成及其环境意义辨识.矿物学报,1999,(2):175-182.]
    [17] Xie YY,Wang QL,Li CA et al. Climatic implication of grain size from lacustrine sediments:A case study of Jiangling section,Jianghan plain,China. Geological Science and Technology Information,2004,23(4):41-43.[谢远云,王秋良,李长安等.湖泊沉积物粒度的气候指示意义———以江汉平原江陵剖面为例.地质科技情报,2004,23(4):41-43.]
    [18] Zhang ST,Song XL,Zhang ZX et al. The changing of mineral composition and environmental significance in surface sediments of Xingyun Lake. Advances in Earth Sciences,2003,18(6):928-932.[张世涛,宋学良,张子雄等.星云湖表层沉积物矿物组成及其环境意义.地球科学进展,2003,18(6):928-932.]
    [19] Zhang JF,Zhou LP,Yao SC et al. Radiocarbon and optical dating of lacustrine sediments—A case study in Lake Gucheng. Quaternary Sciences,2007,27(4):522-528.[张家富,周力平,姚书春等.湖泊沉积物的14C和光释光测年———以固城湖为例.第四纪研究,2007,27(4):522-528.]
    [20] Dong YY,Jin F,Huang JH. Poyang Lake sediments grain size characteristics and its tracing implication for formation and evolution processes. Geological Science and Technology Information,2011,(2):57-62.[董延钰,金芳,黄俊华.鄱阳湖沉积物粒度特征及其对形成演变过程的示踪意义.地质科技情报,2011,(2):57-62.]
    [21] Yao TD,Liu XD,Wang NL. The extent of climate change in the Qinghai-Tibet Plateau.Chinese Science Bulletin,2000,(1):98-106.[姚檀栋,刘晓东,王宁练.青藏高原地区的气候变化幅度问题.科学通报,2000,(1):98-106.]
    [22] Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mountain Research&Development,2000,20(1):80-89. DOI:10.1659/0276-4741(2000)020[0080:ASOBOT]2.0.CO; 2.
    [23] Xu XK,Chen H,Levy JK et al. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chinese Science Bulletin,2008,53(6):915-922. DOI:10.1007/s11434-008-0115-x.
    [24] Li K,Liu XQ,Wang YB et al. Late Holocene vegetation and climate change on the southeastern Tibetan Plateau:Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole. Quaternary Science Reviews,2017,177:235-245. DOI:10.1016/j.quascirev.2017.10.020.
    [25] Zhang XS ed. Chinese vegetation and its geographical Pattern:Vegetation Map of the People's Republic of China(1∶1000000). Beijing:Geological Publishing House,2007:834-835.[张新时.中国植被及其地理格局:中华人民共和国植被图(1∶1000000)说明书.北京:地质出版社,2007:834-835.]
    [26] Wang Y,Bekeschus B,Handorf D et al. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems. Quaternary Science Reviews,2017,169:231-242. DOI:10.1016/j.quascirev.2017.06.006.
    [27] Liu EF,Xue B,Yang XD et al.137Cs and210Pb chronology for modern lake sediment:A case study of Chaohu Lake and Taibai Lake. Marine Geology&Quaternary Geology,2009,(6):89-94.[刘恩峰,薛滨,羊向东等.基于~(210)Pb与~(137)Cs分布的近代沉积物定年方法———以巢湖、太白湖为例.海洋地质与第四纪地质,2009,(6):89-94.]
    [28] Dietze M,Dietze E. EMMAgeo:End-member modelling algorithm and supporting functions for grain-size analysis. 2013.
    [29] Wang GJ.210Pb dating for recent sedimentation. Quaternary Sciences,1997,(3):230-239.[万国江.现代沉积的210Pb计年.第四纪研究,1997,(3):230-239.]
    [30] Jin AC,Jiang QF,Chen Y et al.210Pb and137Cs dating and modern sedimentation rate in the Wulungu Lake,Xinjiang.Geoscience,2010,(2):377-382.[金爱春,蒋庆丰,陈晔等.新疆乌伦古湖的210Pb、137Cs测年与现代沉积速率.现代地质,2010,(2):377-382.]
    [31] Weltje GJ. End-member modeling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology,1997,29(4):503-549. DOI:10.1007/BF02775085.
    [32] Friedman GM,Sanders JE eds. Principles of Sedimentology. New York:Wiley,1978:2-4.
    [33] Wang JB,Zhu LP. Grain-size characteristics and their paleo-environmental significance of Chen Co lake sediments in Southern Tibet. Progress in Geography,2002,(5):459-467.[王君波,朱立平.藏南沉错沉积物的粒度特征及其古环境意义.地理科学进展,2002,(5):459-467.]
    [34] Qiang M,Chen F,Zhang J et al. Grain size in sediments from Lake Sugan:a possible linkage to dust storm events at the northern margin of the Qinghai-Tibetan Plateau. Environmental Geology,2007,51(7):1229-1238. DOI:10. 1007/s00254-006-0416-9.
    [35] Xiao J,Si B,Zhai D et al. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology,2008,40(1):519-528. DOI:10.1007/s10933-007-9179-x.
    [36] Xiao CX,Li ZZ. The research summary of grain size analysis and its application in the sedimentation. Journal of Xinjiang Normal University:Natural Sciences Edition,2006,(3):118-123.[肖晨曦,李志忠.粒度分析及其在沉积学中应用研究.新疆师范大学学报:自然科学版,2006,(3):118-123.]
    [37] Ding XG,Ye SY,Gao ZJ. Development and applications of grain size analysis technique. World Geology,2005,(2):203-207.[丁喜桂,叶思源,高宗军.粒度分析理论技术进展及其应用.世界地质,2005,(2):203-207.]
    [38] Liu XQ,Yao B,Yang B. Grain size distribution of aeolian and lacustrine sediments of Kusai Lake in the Hoh Xil region of the northern Qinghai-Tibetan Plateau. Quaternary Sciences,2010,(6):1193-1198.[刘兴起,姚波,杨波.青藏高原北部可可西里库赛湖沉积物及风成物的粒度特征.第四纪研究,2010,(6):1193-1198.]
    [39] Han P,Liu XQ. The climate evolution inferred from Bhagan-Nuur in middle-east part of inner Mongolia since the last 7000years. Quaternary Sciences,2017,(6):1381-1390.[韩鹏,刘兴起.内蒙古中东部查干淖尔湖流域7000年以来的气候演变.第四纪研究,2017,(6):1381-1390.]
    [40] Nie JS,Li M. A grain size study on late Miocene Huaitoutala section,Ne qaidam basin,and implications for Asian monsoon evolution. Quaternary Sciences,2017,(5):1017-1026.[聂军胜,李曼.柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义.第四纪研究,2017,(5):1017-1026.]
    [41] Prins MA,Vriend M,Nugteren G et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau:inferences from unmixing of loess grain-size records. Quaternary Science Reviews,2007,26(1):230-242. DOI:10. 1016/j.quascirev.2006.07.002.
    [42] Yin ZQ,Qin XG,Wu JS et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments. Quaternary Sciences,2008,(2):345-353.[殷志强,秦小光,吴金水等.湖泊沉积物粒度多组分特征及其成因机制研究.第四纪研究,2008,(2):345-353.]
    [43] Wang YJ,Tang HQ,Jiang SJ. End-member modeling analysis of sediment grain-size and implication for depositional dynamics in Liuxihe reservoir,Guangzhou,China. Journal of Chengdu University of Technology:Sci&Technol,2015,(4):476-483.[王艳杰,唐红渠,姜仕军.广州流溪河水库沉积物粒度端元模型分析及其沉积动力学意义.成都理工大学学报:自然科学版,2015,(4):476-483.]
    [44] Li JL,Xu BQ,Lin SB et al. Glacier and climate changes over the past millennium recorded by proglacial sediment sequence from Qiangyong Lake,Southern Tibetan Plateau. Journal of Earth Sciences and Environment,2011,(4):402-411.[李久乐,徐柏青,林树标等.青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化.地球科学与环境学报,2011,(4):402-411.]
    [45] Wang J,Liu ZC,Jiang WY et al. A relationship between susceptibility and grain-size and minerals,and their paleo-environmental implications. Acta Geographica Sinica,1996,(2):155-163.[王建,刘泽纯,姜文英等.磁化率与粒度、矿物的关系及其古环境意义.地理学报,1996,(2):155-163.]
    [46] Hu SY,Wang SM,Apple E et al. Environmental magnetic mechanism of magnetic susceptibility change of lake Hulun Lake sediments. Science in China:Series D:Earth Sciences,1998,(4):334-339.[胡守云,王苏民,Appel E等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.中国科学:D辑:地球科学,1998,(4):334-339.]
    [47] Yao Y,Zhang EL,Shen J et al. Human activities indicated by lacustrine deposition in the region of Shudu Lake. Marine Geology&Quaternary Geology,2007,(5):115-120.[姚远,张恩楼,沈吉等.云南属都湖流域人类活动的湖泊沉积响应.海洋地质与第四纪地质,2007,(5):115-120.]
    [48] Lu MH,Wang HY,Cai YL. Soil erosion investigations based on analyses of sediment in lakes and reservoirs. Bulletin of Soil and Water Conservation,2007,(3):36-41,58.[吕明辉,王红亚,蔡运龙.基于湖泊(水库)沉积物分析的土壤侵蚀研究.水土保持通报,2007,(3):36-41,58.]
    [49] Tan JF,Xiao XY,Li YL. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake,northwestern Yunnan Province. Quaternary Sciences,2018,38(4):900-911.[谭金凤,肖霞云,李艳玲.滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化.第四纪研究,2018,38(4):900-911.]
    [50] Liu SZ,Zhang JG,Gu SX. Study on the soil erosion types in Tibet. Journal of Mountain Research,2006,(5):592-596.[刘淑珍,张建国,辜世贤.西藏自治区土壤侵蚀类型研究.山地学报,2006,(5):592-596.]
    [51] Yan D,Fan JR,Guo FF et al. Spatiotemporal distribution of precipitation erosivity in Tibet Autonomous Region. Bulletin of Soil and Water Conservation,2010,(4):17-21,249.[严冬,范建容,郭芬芬等.西藏地区降水侵蚀力时空分布研究.水土保持通报,2010,(4):17-21,249.]
    [52] Liu BT,Tao HP,Song CF et al. Temporal and spatial variations of rainfall erosivity in Southwest China from 1960 to 2009.Advance in Earth Sciences,2012,(5):499-509.[刘斌涛,陶和平,宋春风等.我国西南山区降雨侵蚀力时空变化趋势研究.地球科学进展,2012,(5):499-509.]
    [53] Krishnamurthy RV,Bhattacharya SK,Kusumgar S. Paleoclimatic changes deduced from13C/12C and C/N ratios of Karewa lake sediments,India. Nature,1986,323(6084):150-152. DOI:10.1038/323150a0.
    [54] Chen JA,Wan GJ,Wang FS et al. The study of carbon environment record of modern sediments in lakes. Scientia Sinica Terrae(D),2002,(1):73-80.[陈敬安,万国江,汪福顺等.湖泊现代沉积物碳环境记录研究.中国科学:D辑,2002,(1):73-80.]
    [55] Wang ML,Lai JP,Hu KT et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake. China Environmental Science,2014,(4):1019-1025.[王毛兰,赖建平,胡珂图等.鄱阳湖表层沉积物有机碳、氮同位素特征及其来源分析.中国环境科学,2014,(4):1019-1025.]
    [56] Li YH,Zheg MP,Zhao XQ et al. Sedimentary characteristics and environmental significance of Yadan Profile in the Northern Dabsun Lake of Qaidam Basin,China. Journal of Earth Sciences and Environment,2017,(6):787-794.[李玉辉,郑绵平,赵小庆等.柴达木盆地达布逊湖北雅丹剖面沉积特征及其环境意义.地球科学与环境学报,2017,(6):787-794.]
    [57] Li SH,Jin ZD,Zhang F et al. Temperature variation in Muztag Ata region over the past 200 years recorded by total organic carbon of lake sediments in Little Kalakul Lake. Journal of Earth Environment,2018,(2):137-148. DOI:10. 7515/JEE182010.[李帅华,金章东,张飞等.小喀湖有机碳记录的慕士塔格地区过去200年温度变化.地球环境学报,2018,(2):137-148.]
    [58] Zhang EL,Shen J,Wang SM et al. Climate and environment change during the past 900 years in Qinghai Lake. J Lake Sci,2002,(1):32-38. DOI:10.18307/2002.0105.[张恩楼,沈吉,王苏民等.青海湖近900年来气候环境演化的湖泊沉积记录.湖泊科学,2002,(1):32-38.]
    [59] Ma L,Wu JL. Environmental significance from organic carbon and its isotope of Angulinao Lake sediment. Journal of Natural Resources,2009,24(6):1099-1104. DOI:10.11849/zrzyxb.2009.06.017.[马龙,吴敬禄.安固里淖湖积物中总有机碳含量及其碳同位素的环境意义.自然资源学报,2009,24(6):1099-1104.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700