用户名: 密码: 验证码:
基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring permafrost deformation in the upstream Heihe River,Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset
  • 作者:陈玉兴 ; 江利明 ; 梁林林 ; 周志伟
  • 英文作者:CHEN YuXing;JIANG LiMing;LIANG LinLin;ZHOU ZhiWei;State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:多年冻土 ; 时序InSAR ; 形变监测 ; 青藏高原 ; 活动层厚度变化
  • 英文关键词:Permafrost;;Time-series InSAR;;Deformation monitoring;;Tibetan Plateau;;Active Layer Thickness(ALT)change
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室;中国科学院大学;
  • 出版日期:2019-07-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC027,QYZDJ-SSW-DQC042);中国科学院战略性先导科技专项子课题(XDA19070104)联合资助;; 国家自然科学基金项目(41590854,41431070,41621091);; 国家重点研发计划课题(2018YFC1406102,2017YFA0603103)
  • 语种:中文;
  • 页:DQWX201907008
  • 页数:14
  • CN:07
  • ISSN:11-2074/P
  • 分类号:93-106
摘要
多年冻土活动层变化导致冻土区大范围地面变形,严重破坏区域内基础设施和水文地质条件,亟需加强活动层季节冻融过程的观测研究.本文提出一种基于分布式目标的小基线集时序InSAR(DSs-SBAS)的冻土形变监测方法.该方法采用分布式目标提取和特征值分解算法,并结合基于地温-形变约束关系的参考点选取新策略,提高了冻土形变监测结果的时空分辨率和可靠性.以祁连山黑河西支源头的野牛沟为研究区域,通过对27景Sentinel-1SAR影像进行时序InSAR分析,获取了2014—2016年该区多年冻土的形变时间序列和年均形变速率,并利用Stefan模型联合地温数据估算其季节性形变幅度.实地踏勘和结果分析表明:(1)研究区大部分多年冻土处于稳定状态(-1.0~+1.0cm·a~(-1)),在地形陡峭的南坡边缘及含冰量丰富的野牛沟河上游两侧沟底部分区域存在较大形变;(2)区域内冻土形变时间序列呈现年周期变化,冻土冻融形变存在季节性周期形变和季节性波动下沉两种形变特征,形变幅度和速率最大可达6.0cm和-3.0cm·a~(-1);(3)不同区域的活动层冻结/融化始日和冻土形变存在明显差异,主要和冻土地貌、土壤类型以及活动层厚度有关.本文提出的方法在青藏高原多年冻土区大范围冻融监测和活动层厚度反演研究方面具有很大的应用潜力.
        Changes in active layer thickness(ALT)over permafrost regions lead to a large-scale ground deformation,affecting infrastructure stability and hydrogeological conditions.Therefore,accurate measurements of such deformation are urgently needed for characterizing the seasonalfreeze-thaw process.In this paper,we present a time-series InSAR method for monitoring permafrost deformation,named"DSs-SBAS",which combines both cut-edge algorithms for identification of radar distributed scatters(DSs)and eigenvalue-decomposition-based optimization of DS interferometric phases to improve the spatial and temporal resolutions of deformation measurements.Taking into account difficulty in selecting reference points for the InSAR analysis in the permafrost region,we introduce a new strategy based on the relationship between ground temperature and deformation to improve the reliability of the selected reference point.This DSs-SBAS InSAR method is applied to investigate ground deformation over permafrost regions at the upstream west branch of the Heihe River,Qilian Mountain.A total of 27 Sentinel-1 SAR images are employed to derive deformation time series and annual deformation rates between 2014 and 2016.In addition,the Stefan model constrained by the ground temperatures is adopted to calculate the seasonal deformation amplitude.The results indicate that(1)most of the permafrost in the study area was stable(-1.0~+1.0 cm·a-1),and large deformations occurred in the southern slope and the bottom part of the upper reaches of the Yeniugou River,(2)there are two main temporal processes of deformation with annual cycles,namely seasonal cycle deformation and seasonal subsidence.The largest deformation rate and maximum deformation amplitude were up to 6.0 cm and-3.0 cm·a-1,respectively,(3)a significant heterogeneous pattern in freeze-thaw cycles and permafrost deformation is found,which is mainly controlled by permafrost landscapes,soil types and ALT.This proposed DSs-SBAS InSAR method has a great potential for monitoring large-scale deformation and retrieving ALT variations over permafrost regions in the Tibetan Plateau.
引文
Abdelfattah R,Nicolas J M.2006.Interferometric SAR coherence magnitude estimation using second kind statistics.IEEETransactions on Geoscience and Remote Sensing,44(7):1942-1953.
    Cao B,Gruber S,Zhang T J,et al.2017.Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains,Western China.Journal of Geophysical Research:Earth Surface,122(3):574-591.
    Chen F L,Lin H,Li Z,et al.2012.Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C-and L-band small baseline SAR interferometry.Remote Sensing of Environment,123:532-540.
    Chen F L,Lin H,Zhou W,et al.2013.Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section,Tibet Plateau,China.Remote Sensing of Environment,138:10-18.
    Cheng G D,Jin H J.2013.Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes.Hydrogeology and Engineering Geology(in Chinese),40(1):1-11.
    Daout S,Doin M P,Peltzer G,et al.2017.Large-scale InSARmonitoring of permafrost freeze-thaw cycles on the Tibetan Plateau.Geophysical Research Letters,44(2):901-909.
    Das N N,Entekhabi D,Kim S,et al.2018.SMAP/Sentinel-1L2Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture,Version 1.doi:10.5067/9UWR1WTHW1WN.
    Das N N,Entekhabi D,Kim S,et al.2017.High-resolution enhanced product based on SMAP active-passive approach using sentinel 1A and 1B SAR data.∥2017IEEE International Geoscience and Remote Sensing Symposium.Fort Worth,TX,USA:IEEE.
    Ferretti A,Fumagalli A,Novali F,et al.2011.A new algorithm for processing interferometric data-stacks:SqueeSAR.IEEETransactions on Geoscience and Remote Sensing,49(9):3460-3470.
    Fornaro G,Verde S,Reale D,et al.2015.CAESAR:An approach based on covariance matrix decomposition to improve multibaselinemultitemporal interferometric SAR processing.IEEE Transactions on Geoscience and Remote Sensing,53(4):2050-2065.
    Goel K,Adam N.2012.An advanced algorithm for deformation estimation in non-urban areas.ISPRSJournalofPhotogrammetry andRemoteSensing,73:100-110.
    Hanssen R F.2001.Radar interferometry data interpretation and error analysis.Journal of the Graduate School of the Chinese Academy of Sciences,2(1):V5-577-V5-580.
    Hu B,Wang H S,Jia L L,et al.2010.Using DInSAR to monitor deformation of frozen ground in Tibetan plateau.Journal of Geodesy and Geodynamics(in Chinese),30(5):53-56.
    Jia Y Y,Kim J W,Shum C K,et al.2017.Characterization of active layer thickening rate over the northern Qinghai-Tibetan plateau permafrost region using ALOS interferometric synthetic aperture radar data,2007-2009.Remote Sensing,9(1):84.
    Jiang M,Ding X L,Hanssen R F,et al.2015.Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR.IEEE Transactions on Geoscience and Remote Sensing,53(3):1213-1224.
    Jiang M,Ding X L,He X F,et al.2016.FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California.Chinese Journal of Geophysics(in Chinese),59(10):3592-3603,doi:10.6038/cjg20161007.
    Lee J S,Pottier E.2009.Polarimetric Radar Imaging From Basics to Applications.Boca Raton:CRC Press.
    Li S S,Li Z W,Hu J,et al.2013.Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm.Chinese Journal of Geophysics(in Chinese),56(5):1476-1486,doi:10.6038/cjg20130506.
    Li Y H,Liu M,Wang Q L,et al.2018.Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau.Earth and Planetary Science Letters,487:179-189.
    Li Z,Li X W,Liu Y Z,et al.2004.Detecting the displacement field of thaw settlement by means of SAR interferometry.Journal of Glaciology and Geocryology(in Chinese),26(4):389-396.
    Li Z,Tang P P,Zhou J M,et al.2015.Permafrost environment monitoring on the Qinghai-Tibet Plateau using time series ASAR images.International Journal of Digital Earth,8(10):840-860.
    Liu L,Zhang T J,Wahr J.2010.InSAR measurements of surface deformation over permafrost on the North Slope of Alaska.Journal of Geophysical Research:Earth Surface,115(F3):F03023,doi:10.1029/2009JF001547.
    Liu L,Schaefer K,Zhang T J,et al.2012.Estimating 1992-2000average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence.Journal of Geophysical Research:Earth Surface,117(F1):F01005,doi:10.1029/2011JF002041.
    Liu L,Larson K M.2017.Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals.The Cryosphere,12(2):477-489.
    Torres R,Snoeij P,Geudtner D,et al.2012.GMES Sentinel-1mission.Remote Sensing of Environment,120:9-24.
    Verde S,Reale D,Pauciullo A,et al.2018.Improved Small Baseline processing by means of CAESAR eigen-interferograms decomposition.ISPRS Journal of Photogrammetry and Remote Sensing,139:1-13.
    Wang C J.2015.Land surface deformation research of permafrost degradation area in northeast China based on D-InSAR[Ph.D.thesis](in Chinese).Harbin:Northeast Forestry University.
    Wang Q F,Zhang T J,Peng X Q,et al.2015.Changes of soil thermal regimes in the Heihe river basin over western China.Arctic,Antarctic,and Alpine Research,47(2):231-241.
    Wang Q F,Jin H J,Zhang T J,et al.2016.Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains.Chinese Science Bulletin(in Chinese),61(24):2742-2756,doi:10.1360/N972015-01237.
    Wang S L,Jin H J,Li S X,et al.2000.Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts.Permafrost and Periglacial Processes,11(1):43-53.
    Wang T,Perissin D,Rocca F,et al.2011.Three Gorges Dam stability monitoring with time-series InSAR image analysis.Science China Earth Sciences,54(5):720-732.
    Wang Z J,Li S S.1999.Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms.∥1999IEEE International Geoscience and Remote Sensing Symposium.Hamburg,Germany,Germany:IEEE.
    Xie C,Li Z,Li X W.2009.A permanent scatterers method for analysis of deformation over permafrost regions of QinghaiTibetan Plateau.∥2008IEEE International Geoscience and Remote Sensing Symposium.Boston,MA,USA:IEEE.
    Yuan K,Zhang J Z,Zhu D P.2013.Analysis of deformation characteristics of embankment with deep permafrost table and degenerative permafrost.Rock and Soil Mechanics(in Chinese),34(12):3543-3548.
    Zhang T J,Wu J C,Peng X Q,et al.2013.Permafrost characteristics over the Heihe River Basin in western China.Journal of Food Agriculture and Environment,11(3):1084-1085.
    Zhang Z J.2017.Research on Qinghai-Tibet permafrost environment and engineering using high resolution SAR images[Ph.D.thesis](in Chinese).Beijing:The University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences).
    Zhao L,Cheng G D,Li S X,et al.2000.Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau.Chinese Science Bulletin,45(23):2181-2186.
    Zhao L,Ding Y J,Liu G Y,et al.2010.Estimates of the reserves of ground ice in permafrost regions on the Tibetan Plateau.Journal of Glaciology and Geocryology(in Chinese),32(1):1-9.
    Zhao Q,Wu W W,Wu Y L.2016.Using combined GRACE and GPS data to investigate the vertical crustal deformation at the northeastern margin of the Tibetan Plateau.Journal of Asian Earth Sciences,134:122-129.
    Zhao R,Li Z W,Feng G C,et al.2016.Monitoring surface deformation over permafrost with an improved SBAS-InSARalgorithm:With emphasis on climatic factors modeling.Remote Sensing of Environment,184:276-287.
    Zhou Y W,Guo D X,Qiu G Q,et al.2000.Geocryology in China(in Chinese).Beijing:Science Press.
    Zwieback S,Hensley S,Hajnsek I.2015.Assessment of soil moisture effects on L-band radar interferometry.Remote Sensing of Environment,164:77-89.
    程国栋,金会军.2013.青藏高原多年冻土区地下水及其变化.水文地质工程地质,40(1):1-11.
    胡波,汪汉胜,贾路路等.2010.DInSAR技术监测青藏高原冻土形变的试验研究.大地测量与地球动力学,30(5):53-56.
    蒋弥,丁晓利,何秀凤等.2016.基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例.地球物理学报,59(10):3592-3603,doi:10.6038/cjg20161007.
    李珊珊,李志伟,胡俊等.2013.SBAS-InSAR技术监测青藏高原季节性冻土形变.地球物理学报,56(5):1476-1486,doi:10.6038/cjg20130506.
    李震,李新武,刘永智等.2004.差分干涉SAR冻土形变检测方法研究.冰川冻土,26(4):389-396.
    王春娇.2015.基于D-InSAR的东北多年冻土退化区地表形变研究[博士论文].哈尔滨:东北林业大学.
    王庆锋,金会军,张廷军等.2016.祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素.科学通报,61(24):2742-2756,doi:10.1360/N972015-01237.
    袁堃,章金钊,朱东鹏.2013.深上限-退化型多年冻土路基变形特征分析.岩土力学,34(12):3543-3548.
    张正加.2017.高分辨率SAR数据青藏高原冻土环境与工程应用研究[博士论文].北京:中国科学院大学(中国科学院遥感与数字地球研究所).
    赵林,程国栋,李述训等.2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程.科学通报,45(11):1205-1211.
    赵林,丁永建,刘广岳等.2010.青藏高原多年冻土层中地下冰储量估算及评价.冰川冻土,32(1):1-9.
    周幼吾,郭东信,邱国庆等.2000.中国冻土.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700