用户名: 密码: 验证码:
不同渗流形态下沥青路面结构动力响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Dynamic Response of Asphalt Pavement Structure Under Different Seepage Flow States
  • 作者:周志 ; 李岩 ; 俞文生 ; 平高明
  • 英文作者:ZHOU Zhi-gang;LI Yan;YU Wen-sheng;PING Gao-ming;Key Laboratory of Road Structure and Material, Ministry of Transport, Changsha University of Science & Technology;Jiangxi Provincial Expressway Investment Group Co., Ltd.;
  • 关键词:道路工程 ; 沥青路面 ; 非线性有限元方法 ; 时程响应 ; 碗形分布荷载 ; Forchheimer非线性渗流 ; 达西渗流
  • 英文关键词:road engineering;;asphalt pavement;;nonlinear finite element method;;time-history response;;bowl-shaped distribution load;;Forchheimer's nonlinear seepage flow;;darcy seepage flow
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:长沙理工大学道路结构与材料交通行业重点实验室;江西省高速公路投资股份有限公司;
  • 出版日期:2019-03-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.187
  • 基金:国家自然科学基金项目(51378084);; 交通运输部应用基础研究项目(2014319825060);; 湖南省研究生科研创新项目(CX2014B371);; 道路结构与材料交通行业重点实验室开放基金项目(kfj150303)
  • 语种:中文;
  • 页:ZGGL201903003
  • 页数:12
  • CN:03
  • ISSN:61-1313/U
  • 分类号:17-28
摘要
为了研究荷载-渗流耦合作用下不同渗流形态对沥青路面结构各力学场量响应的影响,进一步揭示沥青路面水损害机理,在高水压沥青混合料渗透试验的基础上,采用非线性有限元方法,模拟分析碗形分布动荷载下Forchheimer非线性渗流和达西线性渗流时饱水沥青路面内部各力学场量的变化。渗透试验结果表明:在较高水力梯度下渗流流速-水力梯度关系呈现出非线性特征,不再适用达西定律,而需应用Forchheimer非线性渗流定律描述。数值模拟分析结果表明:2种渗流形态时沥青路面结构内部各力学场量均随着车轮动荷载的作用过程表现出波动性,且孔隙水压力均随着半正弦波型荷载的变化而呈正相关关系;与达西渗流时计算结果相比,非线性渗流时上面层内正孔隙水压力的峰值高49%,沥青面层内水平方向的拉应力、压应力、拉应变的峰值分别高16%、105%、15%,且在路表产生竖向拉应力,孔隙水压力也远高于现场实测值;2种渗流形态时均在上基层底部产生竖向拉应力,在沥青路面内产生的剪应力差别很小。因此,在车轮动荷载作用下,饱水沥青路面内部形成超高孔隙水压力和高流速的非线性渗流,会产生比线性渗流更为严重的水损害,以往基于达西定律的饱水沥青路面动态响应分析低估了车轮动荷载对沥青路面水损害的影响程度。
        In order to study the effects of different seepage states on the response of mechanical field parameters of asphalt pavement structures under load-seepage coupling behavior, and reveal the mechanism of water damage, this study simulated and analyzed the changes in the mechanical response of saturated asphalt pavement structures under Forchheimer seepage flow and Darcy seepage flow conditions using non-linear finite element method based on the permeability test of asphalt mixture under the condition of high water pressure. The permeability test results show that the relationship between seepage flow velocity and hydraulic gradient takes on the stronger nonlinear properties at higher hydraulic gradients, therefore Darcy's law is no longer active, but Forchheimer's nonlinear seepage flow can describe the nonlinear properties effectively. The simulation results show that the mechanical field parameters of asphalt pavement structures fluctuate with vehicle load both in Forchheimer and Darcy seepage flow conditions, and pore-water pressure has a positive correlation with half-sine wave load. Comparison of the calculated results using Darcy's law and Forchheimer's law for nonlinear seepage flow show that the positive pore pressure peak in the upper layer is 0.49 times higher, whereas the peaks of horizontal tensile stress, press stress, and tensile strain are 16%, 105%, and 15% higher, respectively. The vertical tension stress emerges at the surface of the pavement. The pore-water pressure peak at the surface course is much higher than the field measurement values. The vertical tension stress appeared at the bottom of the upper base course both in Forchheimer and Darcy seepage flow conditions. The difference between the shear stress peaks that appeared in each layer of asphalt pavement structures is not significant. Therefore, the water damage caused by nonlinear seepage flow, which can lead to ultrahigh pore-water pressure and high flow velocity in saturated asphalt pavements, is more serious than that caused by linear seepage flow. Previous dynamic response analysis of saturated asphalt pavements based on Darcy's law underestimated the influence of the degree of water damage caused by wheel dynamic load.
引文
[1] 傅搏峰.沥青路面水损害疲劳破坏过程的数值模拟分析[D].长沙:长沙理工大学,2005. FU Bo-feng. The Numerical Simulation Analysis of Asphalt Pavement Moisture Damage Fatigue Failure Process [D]. Changsha: Changsha University of Science & Technology, 2005.
    [2] KUTAY M E, AYDILEK A H, HARMAN T. Dynamic Hydraulic Conductivity (Permeability) of Asphalt Pavement [C]// ASCE. Geo Congress 2006: Geotechnical Engineering in the Information Technology Age. Reston: ASCE, 2006: 1-6.
    [3] 罗志刚,周志刚,郑健龙.沥青路面水损害分析[J]. 地下空间与工程学报,2006,2(3):504-509. LUO Zhi-gang, ZHOU Zhi-gang, ZHENG Jian-long. Analysis of Moisture Damage of Asphalt Pavement [J]. Chinese Journal of Underground Space and Engineering, 2006, 2 (3): 504-509.
    [4] KUTAY M E, AYDILEK A H. Dynamic Effects on Moisture Transport in Asphalt Concrete [J]. Journal of Transportation Engineering, 2007, 133 (7): 406-414.
    [5] 董泽蛟,谭忆秋,曹丽萍,等.水-荷载耦合作用下沥青路面孔隙水压力研究[J].哈尔滨工业大学学报,2007,39(10):1614-1617. DONG Ze-jiao, TAN Yi-qiu, CAO Li-ping, et al. Research on Pore Pressure Within Asphalt Pavement Under the Coupled Moisture-loading Action [J]. Journal of Harbin Institute of Technology, 2007, 39 (10): 1614-1617.
    [6] 崔新壮,金青.轮载作用下饱水沥青路面的动力响应[J]. 山东大学学报:工学版,2008,38(5):19-24. CUI Xin-zhuang, JIN Qing. The Dynamic Response of Statured Asphalt Pavement Under Wheel Loads [J]. Journal of Shandong University: Engineering Science, 2008, 38 (5): 19-24.
    [7] 周长红,陈静云,王哲人,等.沥青路面动水压力计算及其影响因素分析[J].中南大学学报:自然科学版,2008,39(5):1100-1104. ZHOU Chang-hong, CHEN Jing-yun, WANG Zhe-ren, et al. Dynamic Numerical Solution of Pore Water Pressure and Its Parameters for Asphalt Pavement [J]. Journal of Central South University: Science and Technology, 2008, 39 (5): 1100-1104.
    [8] CUI Xin-zhuang, JIN Qing, SHANG Qing-sen, et al. Numerical Simulation of Dynamic Pore Pressure in Asphalt Pavement [J]. Journal of Southeast University: English Edition, 2009, 25 (1): 79-82.
    [9] 祁文洋,任瑞波,李美玲.饱和沥青路面内孔隙水压力研究[J]. 山东理工大学学报:自然科学版,2011,25(3):63-66. QI Wen-yang, REN Rui-bo, LI Mei-ling. Research on Pore pressure within Saturated Asphalt Pavement [J]. Journal of Shandong University of Technology: Natural Science Edition, 2011, 25 (3): 63-66.
    [10] 吴国雄,周宇,杨锐.降雨入渗时沥青路面流固耦合作用的力学响应[J]. 重庆交通大学学报:自然科学版,2012,31(6):1141-1148. WU Guo-xiong, ZHOU Yu, YANG Rui. Mechanical Response of Asphalt Pavement Under Fluid-solid Coupling in the Case of Rainfall Infiltration [J]. Journal of Chongqing Jiaotong University: Natural Science, 2012, 31 (6): 1141-1148.
    [11] 郭成成.孔隙水压力对沥青路面性能的影响及其监测研究[D].南京:南京航空航天大学,2013. GUO Cheng-cheng. The Influence of Pore Pressure on the Performance of the Asphalt Pavement and Its Monitoring [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [12] 蔡燕霞,申爱琴,郭寅川,等.沥青混合料动水破坏行为与动力渗水试验模拟[J]. 长安大学学报:自然科学版,2015,35(2):13-18. CAI Yan-xia, SHEN Ai-qin, GUO Yin-chuan, et al. Dynamic Water Damage Behavior and Dynamic Seepage Test for Asphalt Mixture [J]. Journal of Chang'an University: Natural Science Edition, 2015, 35 (2): 13-18.
    [13] 唐勇斌.多雨地区路基路面饱和-非饱和渗流特性研究[D].广州:华南理工大学,2016. TANG Yong-bin. Study on Saturated-unsaturated Seepage Characteristics of Subgrade and Pavement in Rainy Area [D]. Guangzhou: South China University of Technology, 2016.
    [14] 李少波,张宏超,孙立军.动水压力的形成与模拟测量[J]. 同济大学学报:自然科学版,2007,35(7):915-918. LI Shao-bo, ZHANG Hong-chao, SUN Li-jun. Development and Simulation Measurement of Dynamic Hydraulic Pressure [J]. Journal of Tongji University: Natural Science, 2007, 35 (7): 915-918.
    [15] 高俊启,陈昊,季天剑,等.沥青路面动水压力光纤传感测量研究[J]. 传感器与微系统,2009,28(9):59-61. GAO Jun-qi, CHEN Hao, JI Tian-jian, et al. Study of Dynamic Hydraulic Pressure Measurement on Asphalt Pavement Using Fiber-optic Sensing [J]. Transducer and Microsystem Technologies, 2009, 28 (9): 59-61.
    [16] 蒋泽民,高俊启,季天剑,等.压电传感器测量路面动水压力研究[J]. 传感器与微系统,2012,31(4):17-19. JIANG Ze-min, GAO Jun-qi, JI Tian-jian, et al. Research on Piezoelectric Sensor Measuring Pavement Hydrodynamic Pressure [J]. Transducer and Microsystem Technologies, 2012, 31 (4): 17-19.
    [17] 王媛,秦峰,夏志皓,等.深埋隧洞涌水预测非达西流模型及数值模拟[J].岩石力学与工程学报,2012,31(9):1862-1868. WANG Yuan, QIN Feng, XIA Zhi-hao, et al. Non-Darcy Flow Model and Numerical Simulation for Predicting Water Inflow in Deep Tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (9): 1862-1868.
    [18] HAKAMI E, LARSSON E. Aperture Measurements and Flow Experiments on a Single Natural Fracture[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33 (4): 395-404.
    [19] FORCHHEIMER P. Wasserbewegun Durch Boden [J]. Zeitschrift des Vereines Deutscher Ingenieure, 1901, 45: 1782-1788.
    [20] 周志刚,李岩,李帅帅,等.沥青路面荷载应力-渗流-损伤多场耦合效应[R].长沙:长沙理工大学,2017. ZHOU Zhi-gang, LI Yan, LI Shuai-shuai, et al. The Multi-fields Coupling Effect of Load Stress-seepage-damage on Asphalt Pavement [R]. Changsha: Changsha University of Science & Technology, 2017.
    [21] BORDIER C,ZIMMER D. Drainage Equations and Non-Darcian Modelling in Coarse Porous Media or Geosynthetic Materials [J]. Journal of Hydrology, 2000, 228 (3): 174-187.
    [22] 周志刚,张起森,郑健龙.土工格栅加固碎石桩复合地基的机理分析[J].土木工程学报,1998,31(1):20-25. ZHOU Zhi-gang,ZHANG Qi-sen, ZHENG Jian-long. Analysis of Mechanism of Improved Ground with Stone Columns Reinforced Geogrids [J]. China Civil Engineering Journal, 1998, 31 (1): 20-25.
    [23] 王成华,殷忠平,李军.堤坝Forchheimer型非达西渗流场特性分析[J]. 河北工程大学学报:自然科学版,2015,32(3):66-69. WANG Cheng-hua, YIN Zhong-ping, LI Jun. Analysis of the Characteristics of Forchheimer's Non-Darcian Flow Fields of Earth Dams [J]. Journal of Hebei University of Engineering: Natural Science Edition, 2015, 32 (3): 66-69.
    [24] JTG D50—2017,公路沥青路面设计规范[S]. JTG D50—2017, Specifications for Design of Highway Asphalt Pavement [S].
    [25] 向浩,朱洪洲,陈柳晓,等.离析对密级配沥青混合料渗透性能的影响[J].重庆交通大学学报:自然科学版,2018,37(11):26-34. XIANG Hao, ZHU Hong-zhou, CHEN Liu-xiao, et al. Effects of Segregation on the Permeability of the Dense-graded Asphalt Mixture [J]. Journal of Chongqing Jiaotong University: Natural Science, 2018, 37 (11): 26-34.
    [26] 王凯.路面设计的碗型分布荷载图式[J].岩土工程学报,1983,5(4):43-55. WANG Kai. Bowl-shaped Distribution Load Pattern for Pavement Design [J]. Chinese Journal of Geotechnical Engineering, 1983, 5 (4): 43-55.
    [27] HUANU H. Pavement Analysis and Design [M]. 2nd ed. New York: Prentice Hall, Inc., 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700