用户名: 密码: 验证码:
不同单价电解质水溶液对逆电渗析电堆工作特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of different monovalent electrolyte aqueous solution on the performance characteristics of reverse electrodialysis stack
  • 作者:吴德兵 ; 徐士鸣 ; 吴曦 ; 胡军勇 ; 冷强 ; 徐志杰 ; 金东旭 ; 王平
  • 英文作者:WU Debing;XU Shiming;WU Xi;HU Junyong;LENG Qiang;XU Zhijie;JIN Dongxu;WANG Ping;School of Energy and Power Engineering, Dalian University of Technology;
  • 关键词:逆电渗析 ; 电解质 ; 电化学 ; 盐差能 ; 传质
  • 英文关键词:revers electrodialysis;;electrolytes;;electrochemistry;;salinity gradient power;;mass transfer
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:大连理工大学能源与动力学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:国家自然科学基金(51776029,51606024)
  • 语种:中文;
  • 页:HGJZ201906022
  • 页数:8
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:206-213
摘要
以5种工质盐溶液作为逆电渗析堆(RED)的工作溶液,分别在两种浓度(mol/L)比(3/0.05、5/0.05)下,分析逆电渗析堆主要工作特性参数:开路电压、电堆欧姆内阻以及功率密度。实验结果表明:电导率高的电解质溶液为工质时,电堆内阻降低,实验中以浓度比5/0.05溴化铵溶液为工质的电堆具有最低的欧姆内阻(2.80Ω),同时电堆开路电压也最低(1.355V)。因为过高的溶液浓度梯度降低了离子交换膜的离子选择透过性。浓度比5/0.05乙酸钾溶液为工质的电堆具有高的开路电压,达到1.929V,比氯化锂溶液高6.9%,但其电堆内阻比氯化锂溶液高17%,以氯化锂溶液为工质的电堆输出的最大功率密度达到2.217W/m2。以乙酸钠溶液为工质开路电压比乙酸钾稍低,但其内阻过高,使得输出的最大功率密度最小。
        The present work experimentally investigates the use of five pure salt solutions as working solution in a lab-scale reverse electrodialysis(RED) stack. The main performance parameters of RED stack were analyzed in terms of open circuit voltage(OCV), stack ohm-resistance and power density.Effect of two concentration gradients(3/0.05 and 5/0.05) was investigated. Results show that the electrolyte solution with high electric conductivity is good to reduce stack ohm-resistance. The experimental lowest stack resistance of 2.8Ω was measured when using NH_4Br solution at concentration of5/0.05, meanwhile, the experimental lowest OCV reached at 1.355 V. Because the permselectivity of ionexchange membranes is weakened at high concentration. The experimental highest OCV of 1.929 V was measured when using KAc solution at concentration of 5/0.05, which is about 9% higher than the OCV in LiCl at the same concentration. Due to 17% lower resistance, the latter achieved the maximum power density of 2.217 W/m~2. The OCV in NaAc is slightly lower than that in KAc, but the latter internal resistance is too high, which makes the latter maximum power density minimum.
引文
[1] ZEVENHOVEN R, BEYENE A. The relative contribution of waste heat from power plants to global warming[J]. Energy, 2011, 36(6):3754-3762.
    [2] TCHANCHE B F, LAMBRINOS G, FRANGOUDAKIS A, et al. Lowgrade heat conversion into power using organic rankine cycles—a review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8):3963-3979.
    [3] THEKDI A, NIMBALKAR S U. Industrial waste heat recovery—potential applications, available technologies and crosscutting R&D opportunities[R]. Tennessee:Oak Ridge National Laboratory, 2014:5-20.
    [4]刘茜,李华山,卜宪标,等.太阳能有机朗肯-闪蒸循环工质选择[J].化工进展, 2018, 37(5):1781-1788.LIU Xi, LI Huashan, BU Xianbiao, et al. Working fluid selection for solar binary-flashing cycle[J]. Chemical Industry and Engineering Progress, 2018, 37(5):1781-1788.
    [5]韩中合,许鸿胜,范伟,等.低温烟气有机郎肯循环系统热力性能与经济性的对比分析[J].化工进展, 2017, 36(11):4010-4016.HAN Zhonghe,XU Hongsheng,FAN Wei, et al. Comparison of thermodynamic performance and economic efficiency of ORC system for low temperature flue gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11):4010-4016.
    [6] CARATI A, MARINO M, BROGIOLI D. Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources[J]. Energy, 2015, 93:984-993.
    [7] HU J, XU S, WU X, et al. Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation-reverse electrodialysis power generation system[J]. Desalination, 2018, 443:172-183.
    [8]吴曦,徐士鸣,吴德兵,等.逆电渗析法热-电转换系统循环工质匹配准则[J].化工学报, 2016, 67(s2):326-332.WU Xi, XU Shiming, WU Debing, et al. Methodology of assessing working mediums availability for anovel heat-power conversion system with reverse electrodialysis technology[J]. CIESC Journal, 2016, 67(s2):326-332.
    [9]徐士鸣,吴曦,吴德兵.一种新型低品位热能发电方法及装置:CN105261808A[P]. 2016-01-20.XU Shiming, WU Xi, WU Debing. A new method of conversing low grade temperature heat to power:CN201510694726.4[P]. 2016-01-20.
    [10] KIM D D H, PARK B H, KWON K, et al. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J]. Applied Energy, 2017, 189:201-210.
    [11]徐士鸣,吴德兵,吴曦,等.氯化锂溶液为工质的溶液浓差发电实验研究[J].大连理工大学学报, 2017, 57(4):337-344.XU Shiming, WU Debing, WU Xi, et al. Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4):337-344.
    [12]徐士鸣,徐志杰,吴曦,等.溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J].环境科学学报, 2018,38(12):4642-4651.XU Shiming, XU Zhijie, WU Xi, et al. Study on the mechanism of organic wastewater oxidation degradation with reverse electrodialysis powered by concentration difference energy[J]. Acta Scientiae Circumstantiae, 2018,38(12):4642-4651.
    [13]田中良修.离子交换膜:基本原理及应用[M].葛道才,任庆春,译.北京:化学工业出版社,2010:34-43.TANAKA Y. Ion exchange membranes:fundamentals and applications[M]. GE D C, REN Q C, trans.Beijing:Chemical Industry Press, 2010:34-43.
    [14] VEERMAN J, SAAKES M, METZ S J, et al. Reverse electrodialysis:evaluation of suitable electrode systems[J]. Journal of Applied Electrochemistry, 2010, 40(8):1461-1474.
    [15] PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431):660.
    [16] TEDESCO M, CIPOLLINA A, TAMBURINI A, et al. Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J]. Journal of Membrane Science, 2017,522:226-236.
    [17] VEERMAN J, SAAKES M, METZ S J, et al. Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1/2):136-144.
    [18] TEDESCO M, BRAUNS E, CIPOLLINA A, et al. Reverse electrodialysis with saline waters and concentrated brines:a laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492:9-20.
    [19] TEDESCO M, SCALICI C, VACCARI D, et al. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J]. Journal of Membrane Science,2016, 500:33-45.
    [20] VERMAAS D A, SAAKES M, NIJMEIJER K. Doubled power density from salinity gradients at reduced intermembrane distance[J].Environmental Science&Technology, 2011, 45(16):7089-7095.
    [21] ZHU X, HE W, LOGAN B E. Influence of solution concentration and salt types on the performance of reverse electrodialysis cells[J]. Journal of Membrane Science, 2015, 494:154-160.
    [22] POST J W, HAMELERS H V M, BUISMAN C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science&Technology, 2008,42(15):5785-5790.
    [23] KIM H K, LEE M S, LEE S Y, et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a highopen-area spacer[J]. J. Mater. Chem. A, 2015, 3(31):16302-16306.
    [24] PITZER K S, MAYORGA G. Thermodynamics of electrolytesII.activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19):2300-2308.
    [25] FONTANANOVA E, MESSANA D, TUFA R A, et al. Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion[J]. Journal Power Sources,2017, 340:282-293.
    [26] GALAMA A H, VERMAAS D A, VEERMAN J, et al. Membrane resistance:the effect of salinity gradients over a cation exchange membrane[J]. Journal of Membrane Science, 2014, 467:279-291.
    [27] GALAMA A H, HOOG N A, YNTEMA D R. Method for determining ion exchange membrane resistance for electrodialysis systems[J].Desalination, 2016, 380:1-11.
    [28] VERMAAS D A, GULER E, SAAKES M, et al. Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20:170-184.
    [29] BRAUNS E. Salinity gradient power by reverse electrodialysis:effect of model parameters on electrical power output[J]. Desalination, 2009,237(1/2/3):378-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700