用户名: 密码: 验证码:
多点激光冲击强化对TC17钛合金表面残余应力和表面变形影响的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Surface Residual Stress and Deformation of TC17 Titanium Alloy Under Multiple Laser Shock Peening
  • 作者:王春光 ; 宋亚杰 ; 朱然
  • 英文作者:Wang Chunguang;Song Yajie;Zhu Ran;School of Mechanical Engineering,Tianjin Sino-German University of Applied Sciences;School of Mechanical Engineering,Yanshan University;Mechanical and Electrical Engineering,Guangzhou University of Technology;
  • 关键词:激光技术 ; 激光冲击强化 ; 改进有限元模拟方法 ; 表面残余应力 ; 表面变形
  • 英文关键词:laser technique;;laser shock processing;;modified finite element simulation method;;surface residual stress;;surface deformation
  • 中文刊名:YYJG
  • 英文刊名:Applied Laser
  • 机构:天津中德应用技术大学机械工程学院;燕山大学机械工程学院;广东工业大学机电工程学院;
  • 出版日期:2019-06-15
  • 出版单位:应用激光
  • 年:2019
  • 期:v.39
  • 基金:天津市企业科技特派员项目(项目编号:18JCTPJC51900);; 天津市教委科研计划项目(项目编号:2017KJ039)
  • 语种:中文;
  • 页:YYJG201903019
  • 页数:7
  • CN:03
  • ISSN:31-1375/T
  • 分类号:115-121
摘要
通过一种改进的有限元数值模拟方法研究多点激光冲击强化对TC17钛合金表面残余应力和表面变形的影响。为了验证该模拟方法,将已有实验数据与数值模拟结果进行对比分析,分布规律具有一致性。在此基础上,分别分析了激光冲击次数和激光功率密度对表面残余应力和表面变形的影响,数值模拟结果表明,随着激光冲击次数的增加,表面残余应力和表面变形增加,分布不均匀性也增加,3次激光冲击后,表面残余应力和表面变形趋于饱和状态;随着激光功率密度的增加,表面残余应力和表面变形都增加。
        A modified finite element simulation method was used to predict the surface residual stress and surface deformation of TC17 Titanium Alloy under multiple Laser Shock Peening(LSP). In order to verify the modified method, a bench-mark simulation was performed verified with available experimental results and the predicted results were well correlated with those from experimental data. With the aid of the modified method, the influences of the number of impacts and laser power density have been analyzed. The simulated results show that surface residual stress and deformation increase with the increase of impact number and gradually reach saturation after 3 impacts, nonuniform distribution increases with the increase of impact number. The surface residual stress and deformation increase with the increase of the laser power density.
引文
[1] 刘新灵,刘德林,陶春虎,等.航空发动机关键材料断口图谱[M].北京:国防工业出版社,2013:348.
    [2] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京:国防工业出版社,2000:102-108.
    [3] GUJBA A K,MEDRAJ M.Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening[J].Materials,2014,7(12):7925-7974.
    [4] MONTROSS C.S.,WEI T.,YE L.,et al.Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J].International Journal of Fatigue,2002(24):1021-1036.
    [5] LIM H,KIM P,JEONG H,et al.Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J].Journal of Materials Processing Technology,2012,212(6):1347-1354.
    [6] 李媛,何卫锋,聂祥樊,等.激光冲击TC17钛合金疲劳裂纹扩展试验[J].中国表面工程,2017,30(3):40-47.
    [7] 聂祥樊,何卫锋,王学德,等.激光冲击强化对TC17钛合金微观组织和力学性能的影响[J].稀有金属材料与工程,2014,43(7):1691-1696.
    [8] 侯果,朱颖,郭伟,等.激光冲击强化对TC17微观组织和表面硬度的影响[J].激光技术,2017,41(1):68-73.
    [9] CAO Z W,XU H Y,ZOU S K,et al.Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening[J].Chinese Journal of Aeronautics,2012,25(4):650-656.
    [10] YANG Y,ZHANG H,QIAO H C.Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing[J].Journal of Alloys and Compounds,2017(722):509-516.
    [11] BRAISTED W.,BROCKMAN R.Finite element simulation of laser shock peening[J].International Journal of Fatigue,1999(21):719-724.
    [12] WEI X L,LINGX.Numerical modeling of residual stress induced by laser shock processing[J].Applied Surface Science,2014(301):557-563.
    [13] CAO Z W,CHE Z G,ZOUS K,et al.Numerical simulation of residual stress field induced by laser shock processing with square spot[J].Journal of Shanghai University,2011(15):553-556.
    [14] HU Y X,GONG C M,YAO Z Q,et al.Investigation on the non-homogeneity of residual stress field induced by laser shock peening[J].Surface & Coatings Technology,2009(203):3503-3508.
    [15] HU Y X,YAO Z Q,WANG F,et al.Study on residual stress of laser shock processing based on numerical simulation and orthogonal experimental design[J].Surface Engineering,2007(23):470-478.
    [16] KIM J H,KIM Y J,LEE J W,et al.Study on effect of time parameters of laser shock peening on residual stresses using FE simulation[J].Journal of Mechanical Science and Technology,2014(28):1803-1810.
    [17] VASU A,HU Y,GRANDHI R V.Differences in plasticity due to curvature in laser peened components[J].Surface & Coatings Technology,2013(235):648-656.
    [18] 游熙,聂祥樊,何卫锋,等.纳秒脉冲激光冲击诱导冲击波作用下TC17钛合金高应变率本构模型参数辨识[J].中国激光,2016,43(8):0802003.
    [19] FABBRO R,FOURNIER J,BALLARD P,et al.Physical study of laser‐produced plasma in confined geometry[J].Journal of Applied Physics,1990,68(2):775-784.
    [20] CORREA C,DE LARA L R,DíAZ M,et al.Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J].International Journal of Fatigue,2015(79):1-9.
    [21] PEYRE P,CHAIEB I,BRAHAM C.FEM calculation of residual stresses induced by laser shock processing in stainless steels[J].Modelling and simulation in materials science and engineering,2007,15(3):205.
    [22] ZHANG W,YAO Y L.Improvement of Laser Induced Residual Stress Distributions via Shock Waves[C].Proc.ICALEO’00,Laser Materials Processing.2000(89):E183-192.
    [23] 卢国鑫.激光冲击对高温合金表面形貌、组织与性能的影响[D].沈阳:中国科学院金属研究所,2017:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700