用户名: 密码: 验证码:
中梁山岩溶槽谷区不同土地类型土壤生态化学计量学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil Ecological Stoichiometric Characteristics of Different Land Types in Karst Valley Area of Zhongliang Mountain
  • 作者:彭学义 ; 贾亚男 ; 蒋勇军 ; 吴韦 ; 卫敏洁
  • 英文作者:Peng Xueyi;Jia Yanan;Jiang Yongjun;Wu Wei;Wei Minjie;Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University;
  • 关键词:生态化学计量学 ; 土壤碳氮磷 ; 土地利用方式 ; 岩溶槽谷 ; 中梁山
  • 英文关键词:ecological stoichiometry;;soil carbon nitrogen phosphorus;;land use type;;Karst trough valley;;Zhongliang Mountain
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:西南大学地理科学学院岩溶环境重庆市重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.512
  • 基金:国家重点研发计划项目“喀斯特槽谷区土地石漠化过程及综合治理技术研发与示范”(2016YFC0502306)
  • 语种:中文;
  • 页:ZNTB201905014
  • 页数:9
  • CN:05
  • ISSN:11-1984/S
  • 分类号:90-98
摘要
为阐明中梁山岩溶槽谷区不同土地类型土壤养分的空间分布特征及其影响因素,运用地统计学理论和实验室分析方法,以中梁山槽谷区典型耕地、荒草地和林地为研究对象,分析不同土地类型、不同土层深度(0~15、15~30、30~45 cm)土壤有机碳(SOC)、全氮(TN)和全磷(TP)空间分布规律和生态化学计量学特征。结果表明:3种土地类型土壤SOC、TN和TP含量的平均值分别为20587.8、1472.8、598.9 mg/kg,SOC和TN空间变异性较大,TP变异性较小。土壤C、N、P含量随土层深度的增加而降低。SOC、TN含量为:林地>荒草地>耕地;TP含量为:耕地>荒草地>林地。土壤C/N、C/P和N/P空间变异较大(变异系数CV>28%),C/N值变化范围为5.04~41.2,平均值为14.1;C/P值变化范围为11.02~105.42,平均值为37.28;N/P值的变化范围为0.99~6.32,平均值为2.71。不同土地类型土壤C/N差异不显著,C/P、N/P值差异显著。C/N值为林地>耕地>荒草地,C/P、N/P值为林地>荒草地>耕地。耕地土壤SOC、TN和TP之间有显著的相关关系(P<0.01),线性拟合度较高;荒草地和林地的TN与TP、SOC与TP相关性不太明显,线性拟合度较低。C、N、P含量及其生态化学计量值受土壤理化性质、土地类型和人类活动等因子影响。通过对土壤理化性质分析表明:土壤TN、SOC和碱解氮是影响土壤C/N、C/P和N/P值的主要因素。中梁山岩溶槽谷区土壤C、N、P含量和C/N/P值受土地类型、土壤理化性质、人类活动等因素影响较为明显,空间变异性较大。在实际土地利用过程中,要根据不同类型土壤养分状况,因地制宜、科学合理的利用土地,减少土壤养分流失。
        To elucidate the spatial distribution characteristics of soil nutrients in different land types and their influencing factors in Karst valley region, the authors explored the soil ecological stoichiometric characteristics and the distribution of farmland, grassland and forest in the Zhongliang Mountain trough valley area. The soils of different land-use-types and soil depths(0-15, 15-30 and 30-45 cm) were selected to analyze their soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) content based on geostatistic approach and laboratory analysis. The results showed that the average value of SOC, TN and TP in the three soil types was20587.8, 1472.8 and 598.9 mg/kg, respectively. The variation of SOC and TN was larger, and the TP variability was smaller. The content of soil C, N and P decreased with the increase of soil depth. The content of SOC and TN was: forest>wild grassland>farmland; TP content was: farmland>wild grassland>forest. The spatial variation of soil C/N, C/P and N/P were large(CV>28%), and the changing range of C/N value was 5.04 to 41.2,with an average value of 14.1. The changing range of C/P value was 11.02 to 105.42 and the mean value was37.28.The changing range of N/P value was 0.99 to 6.32, with an average value of 2.71. There was no significant difference in soil C/N among different land types but significant difference in C/P and N/P. The value of C/N was forest>farmland>wild grassland, and C/P, N/P value showed a different trend as forest>wild grassland>farmland. There was a significant correlation between SOC, TN and TP in farmland soil(P<0.01). The correlations between TN and TP, SOC and TP of wild grassland and forest were not obvious. The content of C, N, P and its ecological stoichiometry were influenced by the soil physical and chemical properties, land types and human activities. The analysis of soil physical and chemical properties showed that soil TN, SOC and available nitrogen were the main factors affecting soil C/N, C/P and N/P value. The soil C, N,P content and C/N/P value in the Karst trough valley of Zhongliang Mountain were influenced by land types,soil physical and chemical properties, human activities and other factors with large spatial variability. In actual land use, soil nutrient loss could be reduced by scientific and rational use of land according to local conditions.
引文
[1]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
    [2]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019.
    [3] Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometrycouplings in diverse biota[J].Ecology Letters,2003,6:936-943.
    [4] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios inplant tissue as indicator of nutrient limitation and nitrogen saturation[J].Journal of Applied Ecology,2003,40:523-534.
    [5]程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
    [6]曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展[J].生态学报,2013,33(18):5484-5492.
    [7]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.
    [8]罗绪强,张桂玲,杜雪莲,等.茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J].生态环境学报,2014,23(7):1121-1129.
    [9]潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征[J].生态学报,2011,31(2):335-343.
    [10]朱秋莲,邢肖毅,张宏,等.黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J].生态学报,2013,33(15):4674-4682.
    [11]陶冶,张元明,周晓兵.伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J].应用生态学报,2016,27(7):2239-2248.
    [12] Reich P B, Oleksyn J. Global patterns of plant leaf N and P inrelation to temperature and latitude[J].Proceedings of The NationalAcademy of Sciences of The United States of America,2004,101(30):11001-11006.
    [13] Gusewell S, Koerselman W, Verhoeven J T A. Biomass N:P ratiosas indicators of nutrient limitation for plant populations in wetlands[J].Ecological Applications,2003,13(2):372-384.
    [14]王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳氮磷生态化学计量学特征的影响[J].环境科学,2010,31(10):2411-2416.
    [15] Dise, N B, Matzner E, Forsius M. Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across[J].Europe Environmental Pollution.1998,102(SI):453-456.
    [16] Gundersen P, Callesen I, Vries W D. Nitrate leaching in forestecosystems is related to forest floor C/N ratios[J].EnvironmentalPollution,1998,102:403-407.
    [17]杨慧,涂春艳,李青芳,等.岩溶区次生林地不同地貌部位土壤C、N、P化学计量特征[J].南方农业学报,2015,46(5):777-781.
    [18]邹扬庆.基于3S技术的中梁山植被演替识别与演替规律研究[D].重庆:西南大学,2014.
    [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [20]魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,27(2):603-612.
    [21]邱丽萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-972.
    [22]李英,韩红艳,王文娟,等.黄淮海平原不同土地利用方式对土壤有机碳及微生物呼吸的影响[J].生态环境学报,2017,26(1):62-66.
    [23]胡宏祥,邹长明.环境土壤学[M].合肥:合肥工业大学出版社,2013.
    [24]黄巧云.土壤学[M].北京:中国农业出版社,2006.
    [25]刘全友,童依平.北方农牧交错带土地利用类型对土壤养分分布的影响[J].应用生态学报,2005,16(10):1849-1852.
    [26]李东,王子芳,郑杰炳,等.紫色丘陵区不同土地利用方式下土壤有机质和全量氮磷钾含量状况[J].土壤通报,2009,40(2):310-314.
    [27]郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响[J].地理学报,2001,56(4):447-455.
    [28]陈怀满.环境土壤学[M].北京:科学出版社,2010.
    [29]戎郁萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响[J].中国草地,2001,23(4):41-47.
    [30]潘军,宋乃平,吴旭东,等.荒漠草原不同种植年限人工柠条林土壤碳氮磷化学计量特征[J].浙江大学学报,2015,41(2):160-168.
    [31]张丽萍,张锐波,陈兆云,等.城郊不同土地利用方式坡地土壤养分空间动态研究[J].水土保持通报,2007,27(1):39-42.
    [32]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [33] Cleveland C C, Liptzin D. C:N:P stoichiometry in soil:Is there a‘Redfield ratio’for the microbial biomass?[J].Biogeochemistry,2007,85:235-252.
    [34] Paul E A. Nitrogen Cycling in Terrestrial Ecosystems[M].In:NriaguJO, ed. Environmental Biogeochemistry. Ann Arbor Science.Michigan:Ann Arbor.1976.
    [35] Sterner R W, Elser J J. Ecological stoichiometry:the biology ofelements from molecules to the biosphere[J].Princeton:PrincetonUniversity Press,2002.
    [36] Kirkby C A, Richardson A E, Wade L J, et al. Carbonnutrientstoichiometry to increase soil carbon sequestration[J].Soil Biologyand Biochemistry,2013,60:77-86.
    [37]彭佩钦,张文菊,童成立,等.洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J].应用生态学报,2005,16(10):1872-1878.
    [38] Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:Pratios in China's soils:A synthesis of observational data[J].Biogeochemistry,2010,98:139-151.
    [39]卜晓燕,米文宝,许浩,等.宁夏平原不同类型湿地土壤碳氮磷含量及其生态化学计量学特征[J].浙江大学学报:农业与生命科学版,2016,42(1):107-118.
    [40]刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报,2010,34(1):64-71.
    [41]胡耀升,么旭阳,刘艳红.长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J].应用生态学报,2014,25(3):632-638.
    [42]杨阳,刘秉儒,杨新国,等.荒漠草原中不同密度人工柠条灌丛土壤化学计量特征[J].水土保持通报,2014,34(5):67-73.
    [43]章程.典型岩溶泉流域不同土地利用方式土壤营养元素形态及其影响因素[J].水土保持学报,2009,23(4):165-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700