用户名: 密码: 验证码:
微生物微培养系统研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micro-cultivation system in microbiology:frontiers and prospects
  • 作者:陈政霖 ; 马春玄 ; 邢新会 ; 张翀
  • 英文作者:Zhenglin Tan;Chunxuan Ma;Xinhui Xing;Chong Zhang;Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University;Key Laboratory for Industrial Biocatalysis of the Ministry of Education;Center for Synthetic and Systems Biology,Tsinghua University;
  • 关键词:微培养系统 ; 微生物培养 ; 自动化培养系统 ; 模块化培养系统 ; 微流控系统
  • 英文关键词:micro-cultivation system;;microbial cells cultivation;;automated cultivation system;;modularised cultivation system;;microfluidic systems
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:清华大学化学工程系生物化工研究所;工业生物催化教育部重点实验室;清华大学合成与系统生物学中心;
  • 出版日期:2019-07-25
  • 出版单位:生物工程学报
  • 年:2019
  • 期:v.35;No.247
  • 基金:国家重大科学仪器设备开发专项(No.21627812);; “十三五”国家重点研发计划(No.2016YFF0202303);; 清华大学自主科研项目(No.20161080108)资助~~
  • 语种:中文;
  • 页:SHWU201907002
  • 页数:11
  • CN:07
  • ISSN:11-1998/Q
  • 分类号:9-19
摘要
微生物培养是微生物学的起源和根本,成功的微生物培养是进行后续研究的重要前提与基础。但是,微生物培养操作不仅耗费了科研人员大量的精力和时间,还存在着极大的人为误差。近年来,容量小、高通量、模块化、可操作性良好并可进行在线检测的微生物微培养系统得到了微生物学领域的广泛关注。文中介绍了应用于微生物学领域的微培养系统,并按系统构成分类讨论了微生物微培养系统的发展、应用和展望。
        Microbial cells cultivation is not only the origin,but also the foundation of microbiology.Researches in microbiology can only be carried out when the microbial cells can be cultured.However,conventional microbial cell cultivation is not only time consuming and labour intensive,but human error is also inevitable.Recent years,automated,modularised microbial cells micro-cultivation systems with small volume,good controllability,and equipped with real-time monitoring system have attracted great attention in microbiology.This review presents the state-of-the-art micro-cultivation systems which are implemented in microbial cells cultivation.The key development,applications of various system classified based on their construction,and the prospects of micro-cultivation system are discussed and insights into them are also provided.
引文
[1]Monod J.The growth of bacterial cultures.Ann Rev Microbiol,1949,3:371-394.
    [2]Pasteur L.Mémoire sur la fermentation appelée lactique.C R Hebd Seances Acad Sci.1857,45:913-916.
    [3]Koch R.Die aetiologie der tuberculose.Berl Klin Woch,1882,19:221-230.
    [4]Sakula A.Baroness burdett-coutts’garden party:the international medical congress,London,1881.Med Hist,1982,26(2):183-190.
    [5]Monod J.La technique de culture continueé.Theorie et application.Ann Inst Pasteur,1950,79(4):390-410.
    [6]Novick A,Szilard L.Description of the chemostat.Science,1950,112(2920):715-716.
    [7]Novick A,Szilard L.Experiments with the chemostat on spontaneous mutations of bacteria.Proc Natl Acad Sci USA,1950,36(12):708-719.
    [8]Toprak E,Veres A,Michel JB,et al.Evolutionary paths to antibiotic resistance under dynamically sustained drug selection.Nat Genet,2012,44(1):101-105.
    [9]Toprak E,Veres A,Yildiz S,et al.Building a morbidostat:an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition.Nat Protoc,2013,8(3):555-567.
    [10]Takahashi CN,Miller AW,Ekness F,et al.A low cost,customizable turbidostat for use in synthetic circuit characterization.ACS Synth Biol,2015,4(1):32-38.
    [11]Klavins lab open-source mixture controlled turbidostat wiki:homePage[EB/OL].[2018-10-01].https://depts.washington.edu/soslab/turbidostat/pmwiki/pmwiki.php?n=Main.HomePage.
    [12]Matteau D,Baby V,Pelletier S,et al.A small-volume,low-cost,and versatile continuous culture device.PLoSONE,2015,10(7):e0133384.
    [13]Callens C,Coelho NC,Miller AW,et al.A multiplex culture system for the long-term growth of fission yeast cells.Yeast,2017,34(8):343-355.
    [14]Skelding D,Hart SFM,Vidyasagar T,et al.Developing a low-cost milliliter-scale chemostat array for precise control of cellular growth.Quant Biol,2018,6(2):129-141.
    [15]Wong BG,Mancuso CP,Kiriakov S,et al.Precise,automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER.Nat Biotechnol,2018,36(7):614-623.
    [16]Terry SC,Jerman JH,Angell JB.A gas chromatographic air analyzer fabricated on a silicon wafer.IEEE Trans Electr Dev,1979,26(12):1880-1886.
    [17]Angell JB,Terry SC,Barth PW.Silicon micromechanical devices.Sci Am,1983,248(4):44-55.
    [18]Inoue I,Wakamoto Y,Moriguchi H,et al.On-chip culture system for observation of isolated individual cells.Lab Chip,2001,1(1):50-55.
    [19]Richter L,Stepper C,Mak A,et al.Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics.Lab Chip,2007,7(12):1723-1731.
    [20]Zhu Z,Frey O,Ottoz DS,et al.Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.Lab Chip,2012,12(5):906-915.
    [21]Grünberger A,Paczia N,Probst C,et al.A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.Lab Chip,2012,12(11):2060-2068.
    [22]Lee KS,Boccazzi P,Sinskey AJ,et al.Microfluidic chemostat and turbidostat with flow rate,oxygen,and temperature control for dynamic continuous culture.Lab Chip,2011,11(10):1730-1739.
    [23]Costerton JW,Lewandowski Z,Caldwell DE,et al.Microbial biofilms.Ann Rev Microbiol,1995,49:711-745.
    [24]Larsen DH,Dimmick RL.Attachment and growth of bacteria on surfaces of continuous-culture vessels.JBacteriol,1964,88:1380-1387.
    [25]Topiwala HH,Hamer G.Effect of wall growth in steady-state continuous cultures.Biotechnol Bioeng,1971,13(6):919-922.
    [26]BalagaddéF,Hansen CL,Kartalov E,et al.Microfluidic chemostat:US,8426159B2.2013-04-23.
    [27]BalagaddéFK,You LC,Hansen CL,et al.Long-term monitoring of bacteria undergoing programmed population control in a microchemostat.Science,2005,309(5731):137-140.
    [28]Zhang CS,Xing D.Miniaturized PCR chips for nucleic acid amplification and analysis:latest advances and future trends.Nucleic Acids Res,2007,35(13):4223-4237.
    [29]Lwoff A.Lysogeny.Bacteriol Rev,1953,17(4):269-337.
    [30]Lwoff A,Gutmann A.Recherches sur un Bacillus megatherium lysogène.Ann Inst Pasteur,1950,78(6):711-739.
    [31]Weaver JC,Seissler PE,Threefoot SA,et al.Microbiological measurements by immobilization of cells within small-volume elements.Ann N Y Acad Sci,1984,434(1):363-372.
    [32]Weaver JC,Williams GB,Klibanov A,et al.Gel microdroplets:rapid detection and enumeration of individual microorganisms by their metabolic activity.Nat Biotechnol,1988,6(9):1084-1089.
    [33]Shapiro HM.Practical Flow Cytometry.4th ed.New York:Wiley-Liss,2003.
    [34]de Moivre A.De mensura sortis,seu,de probabilitate eventuum in ludis a casu fortuito pendentibus.Philos Trans Roy Soc Lond,1710,27(329):213-264.
    [35]Poisson SD.Recherches sur la Probabilitédes Jugements en Matière Criminelle et en Matière Civile,précedées des Règles Générales du Calcul des Probabilités.Paris:Bachelier,1837.
    [36]Soper HE.Tables of Poisson’s exponential binomial limit.Biometrika,1914,10(1):25-35.
    [37]Thorsen T,Roberts RW,Arnold FH,et al.Dynamic pattern formation in a vesicle-generating microfluidic device.Phys Rev Lett,2001,86(18):4163-4166.
    [38]Abate AR,Hung T,Mary P,et al.High-throughput injection with microfluidics using picoinjectors.Proc Natl Acad Sci USA,2010,107(45):19163-19166.
    [39]O’Donovan B,Eastburn DJ,Abate AR.Electrode-free picoinjection of microfluidic drops.Lab Chip,2012,12(20):4029-4032.
    [40]Baret JC,Miller OJ,Taly V,et al.Fluorescenceactivated droplet sorting(FADS):efficient microfluidic cell sorting based on enzymatic activity.Lab Chip,2009,9(13):1850-1858.
    [41]Bremond N,Thiam AR,Bibette J.Decompressing emulsion droplets favors coalescence.Phys Rev Lett,2008,100(2):024501.
    [42]Link DR,Anna SL,Weitz DA,et al.Geometrically mediated breakup of drops in microfluidic devices.Phys Rev Lett,2004,92(5):054503.
    [43]Grodrian A,Metze J,Henkel T,et al.Segmented flow generation by chip reactors for highly parallelized cell cultivation.Biosens Bioelectron,2004,19(11):1421-1428.
    [44]Dewan A,Kim J,McLean RH,et al.Growth kinetics of microalgae in microfluidic static droplet arrays.Biotechnol Bioeng,2012,109(12):2987-2996.
    [45]Ito M,Sugiura H,Ayukawa S,et al.A bacterial continuous culture system based on a microfluidic droplet open reactor.Anal Sci,2016,32(1):61-66.
    [46]Baraban L,Bertholle F,Salverda MLM,et al.Millifluidic droplet analyser for microbiology.Lab Chip,2011,11(23):4057-4062.
    [47]Jakiela S,Kaminski TS,Cybulski O,et al.Bacterial growth and adaptation in microdroplet chemostats.Angew Chem Int Ed,2013,52(34):8908-8911.
    [48]Agresti JJ,Antipov E,Abate AR,et al.Ultrahighthroughput screening in drop-based microfluidics for directed evolution.Proc Natl Acad Sci USA,2010,107(9):4004-4009.
    [49]Huang MT,Bai YP,Sjostrom SL,et al.Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.Proc Natl Acad Sci USA,2015,112(34):E4689-E4696.
    [50]Sjostrom SL,Bai YP,Huang MT,et al.High-throughput screening for industrial enzyme production hosts by droplet microfluidics.Lab Chip,2014,14(4):806-813.
    [51]Beneyton T,Mahendra Wijaya IP,Postros P,et al.High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics.Sci Rep,2016,6:27223.
    [52]Beneyton T,Thomas S,Griffiths AD,et al.Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.Microb Cell Fact,2017,16(1):18.
    [53]Kim HS,Hsu SC,Han SI,et al.High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library.Plant Direct,2017,1(3):e00011.
    [54]Siedler S,Khatri NK,Zsohár A,et al.Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production.ACS Synth Biol,2017,6(10):1860-1869.
    [55]Najah M,Mayot E,Mahendra-Wijaya IP,et al.New glycosidase substrates for droplet-based microfluidic screening.Anal Chem,2013,85(20):9807-9814.
    [56]Najah M,Calbrix R,Mahendra-Wijaya IP,et al.Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.Chem Biol,2014,21(12):1722-1732.
    [57]Gielen F,Hours R,Emond S,et al.Ultrahighthroughput-directed enzyme evolution by absorbanceactivated droplet sorting(AADS).Proc Natl Acad Sci USA,2016,113(47):E7383-E7389.
    [58]Wang XX,Ren LH,Su YT,et al.Raman-activated droplet sorting(RADS)for label-free high-throughput screening of microalgal single-cells.Anal Chem,2017,89(22):12569-12577.
    [59]Bachmann H,Fischlechner M,Rabbers I,et al.Availability of public goods shapes the evolution of competing metabolic strategies.Proc Natl Acad Sci USA,2013,110(35):14302-14307.
    [60]Akselband Y,Cabral C,Castor TP,et al.Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop(GMD)growth assay and fluorescence-activated cell sorting.J Exp Mar Biol Ecol,2006,329(2):196-205.
    [61]Lok C.Mining the microbial dark matter.Nature,2015,522(7556):270-273.
    [62]Whitman WB,Coleman DC,Wiebe WJ.Prokaryotes:the unseen majority.Proc Natl Acad Sci USA,1998,95(12):6578-6583.
    [63]Amann RI,Ludwig W,Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Mol Biol Rev,1995,59(1):143-169.
    [64]Hugenholtz P,Goebel BM,Pace NR.Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity.J Bacteriol,1998,180(18):4765-4774.
    [65]Zobell CE.Studies on marine bacteria.I.The cultural requirements of heterotrophic aerobes.J Mar Res,1941,4:42-75.
    [66]Button DK,Schut F,Quang P,et al.Viability and isolation of marine bacteria by dilution culture:theory,procedures,and initial results.Appl Environ Microbiol,1993,59(3):881-891.
    [67]Schut F,de Vries EJ,Gottschal JC,et al.Isolation of typical marine bacteria by dilution culture:growth,maintenance,and characteristics of isolates under laboratory conditions.Appl Environ Microbiol,1993,59(7):2150-2160.
    [68]Kaeberlein T,Lewis K,Epstein SS.Isolating"Uncultivable"microorganisms in pure culture in a simulated natural environment.Science,2002,296(5570):1127-1129.
    [69]Stewart EJ.Growing unculturable bacteria.J Bacteriol,2012,194(16):4151-4160.
    [70]Bollmann A,Lewis K,Epstein SS.Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates.Appl Environ Microbiol,2007,73(20):6386-6390.
    [71]Nichols D,Cahoon N,Trakhtenberg EM,et al.Use of ichip for high-throughput in situ cultivation of"Uncultivable"microbial species.Appl Environ Microbiol,2010,76(8):2445-2450.
    [72]Park J,Kerner A,Burns MA,et al.Microdropletenabled highly parallel co-cultivation of microbial communities.PLoS ONE,2011,6(2):e17019.
    [73]Park JH.Microdroplet-enabled co-cultivation and characterization of microbial communities[D].Ann Arbor,Michigan:University of Michigan,2012.
    [74]Baker M.1,500 scientists lift the lid on reproducibility.Nature,2016,533(7604):452-454.
    [75]Zhang X,Zhang XF,Li HP,et al.Atmospheric and room temperature plasma(ARTP)as a new powerful mutagenesis tool.Appl Microbiol Biotechnol,2014,98(12):5387-5396.
    [76]Dutilh BE,Backus L,Edwards RA,et al.Explaining microbial phenotypes on a genomic scale:GWAS for microbes.Brief Funct Genomics,2013,12(4):366-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700